Abstract. The growth of cancer cells is limited by energy supply which is regulated by the energy sensor AMP-kinase (AMPK). Hence, mimicking a low energy state may inhibit cancer growth and may be exploited in anticancer therapies. In the present study, the impact of AMPK activation on cell growth and apoptosis of DU-145 prostate cancer cells was investigated. Incubation with the AMPK activator aminoimidazole carboxamide ribonucleotide (AICAR) dose-dependently inhibited cell growth, activated AMPK, and inhibited mTOR. Furthermore, AICAR treatment activated c-Jun N-terminal kinase (JNK) and caspase-3, thereby initiating apoptosis. Within 60 min of treatment AICAR raised intracellular reactive oxygen species (ROS) which could be abolished in the presence of the free radical scavenger N-(2-mercaptopropionyl)glycin (NMPG), the AMPK inhibitor compound C (Comp C) and the respiratory chain complex I inhibitor rotenone, but not by the NADPH oxidase inhibitor VAS2870. Inhibition of ROS generation abolished AMPK activation by AICAR as well as JNK and caspase-3 activation. Furthermore, AMPK activation, JNK phosphorylation and cleaved caspase-3 upon AICAR treatment were abolished in the presence of Comp C. In summary, our data demonstrate that activation of AMPK by AICAR induces apoptosis of prostate cancer cells by a signaling pathway involving ROS, activation of JNK and cleaved caspase-3.
The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.
Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB.
The opposite effects of IMD on permeability of RCECs and HUVECs are due to differential regulation of actin cytoskeleton dynamics via RhoA and Rac1. Moreover, Rac1 activity is regulated by the RhoA/Rock pathway in RCECs but not in HUVECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.