The biological activities of garlic may be affected by different processing methods. This study, therefore, aimed to evaluate potential anticancer effects of different type of processed garlic extracts on WEHI-164 tumor cells in inbred BALB/c mice and correlate the tumor growth rates with some garlic constituents. In a preclinical trial 60 BALB/c mice were injected with WEHI-164 tumor cells and divided into six groups of 10 animals. Group 1 mice received 200 μL of saline, and groups 2-6 were injected intraperitoneally with fresh, microwaved, 3-month-old, leaves, and boiled garlic extracts, respectively, at 20 mg/kg/0.2 mL. Three weeks following tumor inoculation, the mean tumor size in garlic extract-treated groups was reduced with significant reductions observed in the fresh and microwaved extract groups compared with the control group (P<.05). The antioxidant capacity and the amounts of allicin, flavonoids, and phenolic compounds in differentially processed garlic were evaluated and correlated with their anticancer activities. There was a linear correlation between the amounts of allicin, flavonoids, or phenolic components derived from fresh, microwaved, 3-month-old, leaves, and boiled garlic and cancer growth prevention. In conclusion, garlic has anticancer activity against WEHI-164 tumor cells, and processing such as heating reduces its effect dramatically. The anticancer activities of different kinds of garlic are related to the level of allicin, flavonoids, and phenolic components. Therefore, fresh garlic has the highest content of bioactive components and the greatest anticancer efficacy.
Background: Telomeres through maintaining chromosomal integrity have key roles in the cell life span. The autophagy is typically a pro-survival process and important for maintaining cellular homeostasis. Conversely, in some conditions, autophagy acts as caspase-independent cell death program. Beclin1 gene plays a principal role in the initiation of autophagy. Objective: The aim of this study was to evaluate the effect of autophagy induction via recombinant Beclin1 on telomerase activity and programmed cell death (apoptosis) in MCDK cells. Materials and Methods: The recombinant Beclin1-pcDNA3.1(-) was transfected into MDCK cells. Next, the autophagy information was detected by LC3II staining as autophagy marker using flow cytometry. The telomerase activity was measured by telomeric repeat amplification protocol method in MDCK cells. To detection of the cell death in MDCK cells, apoptosis assay was done through Annexin V staining method. Results: The results of flow cytometry analysis indicated that following overexpression of Beclin1 gene, the percentage of the LC3II was 16.08% compared with control group (0.48%). Following induction of autophagy, telomerase activity reduced 10 folds in comparison with the control group. The rate of apoptosis in transfected MDCK cells increased up to 12.74%. Conclusion: Crosstalk between telomerase, autophagy, and apoptosis may determine the fate of the cancer cell aging. Hence, manipulation of autophagy may create a novel area to design new compounds and combination therapy to shorten the cancer cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.