Non-coding RNAs (ncRNAs) are emerging as important regulators in various pathological conditions including tumorigenesis, metastasis, and drug resistance in human cancers. Oncogenic or tumor suppressor ncRNAs exert prominent effects on cell proliferation, migration and invasion in cancer cells through modulating various signaling pathways including Wnt/β-catenin. Upregulation of the oncogenic Wnt/β-catenin pathway was reported to be implicated in multiple human cancers including breast, liver, colorectal, and urothelial cancers. Therefore, identifying interactions between ncRNAs and canonical Wnt signaling components may represent novel therapeutic targets for better treatment and management of cancer. In this review, we summarized the recent findings about miRNA/lncRNA-dependent mechanisms that regulate Wnt/β-catenin signaling involved in tumorigenesis and metastasis of urinary tract cancers.
Background: Micro RNAs (miRNAs) are small non-coding RNAs known as essential regulators of cell-cell communication. Recent studies have revealed that miRNAs secrete by a blastocyst in culture mediums. We hypothesized that endometrial epithelial cells take up embryo-derived miRNAs and other soluble factors and regulate their receptivity-related genes expression. Methods and Results: Blastocyst culture mediums (BCM) were collected from the individually cultured embryos and, human endometrial epithelial cells (HEECs), were collected from healthy fertile volunteers. To evaluate the effect of BCM on the endometrial receptivity gene expression, HEECs were co-cultured with implanted BCM, non-implanted BCM, and a control culture medium. After determining altered gene expression in the HEECs, the miRNAs-related genes through bioinformatics databases were identified and evaluated in the BCM. Co-culture of primary HEECs with BCM significantly stimulated the expression levels of VEGFA, HBEGF, HOXA10, and LIF in the implanted group compared with non-implanted and control groups. The fold changes of miR‐195 significantly decreased in the implanted BCM group compared with the non-implanted BCM group. Also, we observed decreased fold changes of miR‐29b,145, and increased miR-223 in the implanted BCM group compared with the non-implanted ones. Conclusions: miRNAs' role as potential gene expression regulators during implantation. These molecules are secreted by human blastocyst, uptake by endometrial epithelial cells and cause a change in the endometrial function. We found that BCMs can be effective in implantation process by stimulating related receptivity gene expression, and BCM transfer with the embryo can be useful as an embryo implantation trigger.
Context: The SARS-CoV-2 virus causes dysfunction of vital organs in the body. Concerns about the destructive effect of SARS-CoV-2 on human reproductive tissues and fertility have increased. Evaluation of the possible mechanisms by which SARS-CoV-2 causes infertility is essential for effective prevention and treatment. This review aims to assess the studies that have been conducted on SARS-CoV-2 impacts on the human reproductive system. Evidence Acquisition: This review study investigated articles indexed in PubMed, Science-Direct, Scopus, and google scholar databases from 2019 to 2021. The Keywords SARS-CoV-2, COVID-19, human reproductive system, testis, and ovary were searched in the mentioned databases. Results: The present study assessed the expression of SARS-CoV-2-specific receptors, the presence of the virus in the human reproductive system, and the mechanisms by which this virus can affect human fertility. Conclusions: SARS-CoV-2, like other viruses, may indirectly influence the male reproductive system through cytokine storms, inflammation-causing oxidative stress, and its possible complications. The direct effects of SARS-CoV-2 on the male reproductive system are also reported. The testis may be a potential target for the SARS-CoV-2 virus. The impact of the SARS-CoV-2 virus on women's reproductive performance is unknown and requires further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.