BackgroundStreptococcus pneumoniae (the pneumococcus) is the world’s foremost microbial pathogen, killing more people each year than HIV, TB or malaria. The capacity to penetrate deeper host tissues contributes substantially to the ability of this organism to cause disease. Here we investigated, for the first time, functional genomics modulation of 3 pneumococcal strains (serotype 2 [D39], serotype 4 [WCH43] and serotype 6A [WCH16]) during transition from the nasopharynx to lungs to blood and to brain of mice at both promoter and domain activation levels.ResultsWe found 7 highly activated transcription factors (TFs) [argR, codY, hup, rpoD, rr02, scrR and smrC] capable of binding to a large number of up-regulated genes, potentially constituting the regulatory backbone of pneumococcal pathogenesis. Strain D39 showed a distinct profile in employing a large number of TFs during blood infection. Interestingly, the same highly activated TFs used by D39 in blood are also used by WCH16 and WCH43 during brain infection. This indicates that different pneumococcal strains might activate a similar set of TFs and regulatory elements depending on the final site of infection. Hierarchical clustering analysis showed that all the highly activated TFs, except rpoD, clustered together with a high level of similarity in all 3 strains, which might suggest redundancy in the regulatory roles of these TFs during infection. Discriminant function analysis of the TFs in various niches highlights differential regulatory backgrounds of the 3 strains, and pathogenesis data confirms codY as the most significant predictor discriminating between these strains in various niches, particularly in the blood. Moreover, the predicted TF and domain activation profiles of the 3 strains correspond with their distinct pathogenicity characteristics.ConclusionsOur findings suggest that the pneumococcus changes the short binding sites in the promoter regions of genes in a niche-specific manner to enhance its ability to disseminate from one host niche to another. This study provides a framework for an improved understanding of the dynamics of pneumococcal pathogenesis, and opens a new avenue into similar investigations in other pathogenic bacteria.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-769) contains supplementary material, which is available to authorized users.
Ammonium is an excellent nitrogen source, and ammonium transfer is a fundamental process in most organisms. Membrane transport of ammonium is the key component of nitrogen metabolism mediated by Ammonium Transporter/Methylamine Permease/Rhesus (AMT/MEP/Rh) protein family. Ammonium transporters play different physiological roles in various organisms. Here, we looked at the protein characteristics of ammonium transporters in different organisms to create a link between protein characteristics and the organism. In order to increase the accuracy and precision of the employed models, for the first time, an attempt was made to cover all structural aspects of ammonium transporters in animals, bacteria, fungi, plants, and human by extracting and calculating 874 protein attributes of primary, secondary, and tertiary structures for each ammonium transporter. Then, various weighting and modeling algorithms were applied to determine how structural protein features change between organisms. Considering a large number of protein attributes made it possible to detect key protein characteristics in the structure of ammonium transporters. The results, for the first time, indicated that His-based features including count/frequency of His and frequency/count of Ile-His were the most significant features generating different types of ammonium transporters within organisms. Within different tested models, the C5.0 model was the most efficient and precise model for discrimination of organism type, based on ammonium transporter sequence, with the precision of 94.85%. The determination of protein characteristics of ammonium transporters in different organisms provides a new vista for understanding the evolution of transporters based on the modulation of protein characteristics and facilitates engineering of new transporters. In our point of view, dissecting a large number of structural protein characteristics through data mining algorithms provides a novel functional strategy for studying evolution and phylogeny. This research will serve as a basis for future studies on engineering novel ammonium transporters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.