Hypoxia is an essential component of tumor microenvironment. In this study, we investigated the influence of hypoxia (1% PO2) on CTL-mediated tumor cell lysis. We demonstrate that exposure of target tumor cells to hypoxia has an inhibitory effect on the CTL clone (Heu171)-induced autologous target cell lysis. Such inhibition correlates with hypoxia-inducible factor-1α (HIF-1α) induction but is not associated with an alteration of CTL reactivity as revealed by granzyme B polarization or morphological change. Western blot analysis indicates that although hypoxia had no effect on p53 accumulation, it induced the phosphorylation of STAT3 in tumor cells by a mechanism at least in part involving vascular endothelial growth factor secretion. We additionally show that a simultaneous nuclear translocation of HIF-1α and phospho-STAT3 was observed. Interestingly, gene silencing of STAT3 by small interfering RNA resulted in HIF-1α inhibition and a significant restoration of target cell susceptibility to CTL-induced killing under hypoxic conditions by a mechanism involving at least in part down-regulation of AKT phosphorylation. Moreover, knockdown of HIF-1α resulted in the restoration of target cell lysis under hypoxic conditions. This was further supported by DNA microarray analysis where STAT3 inhibition resulted in a partly reversal of the hypoxia-induced gene expression profile. The present study demonstrates that the concomitant hypoxic induction of phopho-STAT3 and HIF-1α are functionally linked to the alteration of non-small cell lung carcinoma target susceptibility to CTL-mediated killing. Considering the eminent functions of STAT3 and HIF-1α in the tumor microenvironment, their targeting may represent novel strategies for immunotherapeutic intervention.
We identified an antigen recognized on a human non-small-cell lung carcinoma by a cytotoxic T lymphocyte clone derived from autologous tumor-infiltrating lymphocytes. The antigenic peptide is presented by HLA-A2 and is encoded by the CALCA gene, which codes for calcitonin and for the ␣-calcitonin gene-related peptide. The peptide is derived from the carboxy-terminal region of the preprocalcitonin signal peptide and is processed independently of proteasomes and the transporter associated with antigen processing. Processing occurs within the endoplasmic reticulum of all tumoral and normal cells tested, including dendritic cells, and it involves signal peptidase and the aspartic protease, signal peptide peptidase. The CALCA gene is overexpressed in medullary thyroid carcinomas and in several lung carcinomas compared with normal tissues, leading to recognition by the T cell clone. This new epitope is, therefore, a promising candidate for cancer immunotherapy.antigen processing ͉ signal peptidase ͉ signal peptide peptidase
Decreased antigenicity of cancer cells is a major problem in tumor immunology. This is often acquired by an expression defect in the TAP. However, it has been reported that certain murine Ags appear on the target cell surface upon impairment of TAP expression. In this study, we identified a human CTL epitope belonging to this Ag category. This epitope is derived from preprocalcitonin (ppCT) signal peptide and is generated within the endoplasmic reticulum by signal peptidase and signal peptide peptidase. Lung cancer cells bearing this antigenic peptide displayed low levels of TAP, but restoration of their expression by IFN-γ treatment or TAP1 and TAP2 gene transfer abrogated ppCT Ag presentation. In contrast, TAP upregulation in the same tumor cells increased their recognition by proteasome/TAP-dependent peptide-specific CTLs. Thus, to our knowledge, ppCT16–25 is the first human tumor epitope whose surface expression requires loss or downregulation of TAP. Lung tumors frequently display low levels of TAP molecules and might thus be ignored by the immune system. Our results suggest that emerging signal peptidase-generated peptides represent alternative T cell targets, which permit CTLs to destroy TAP-impaired tumors and thus overcome tumor escape from CD8+ T cell immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.