The increase in vehicle numbers has resulted in the growth of traffic jams in cities and highways, thereby raising various issues on fuel consumption, environmental pollution, and traffic safety [1]. Platooning is an Intelligent Transport System (ITS) [2] application which has emerged as a promising solution for the traffic management in highways. The main idea of vehicle platooning suggests that a set of vehicles travel together while maintaining a small distance between each other. This can lead to an increase in traffic capacity and then an improved traffic management and a reduced travel time. Moreover, the comfort and the safety of passengers are enhanced since the scenarios of extreme acceleration or deceleration are eliminated and the platoon vehicles are considered as a single unit. Furthermore, the emission performance and the fuel economy are significantly improved. A vehicle platoon (also called "convoy") can be seen as a group of vehicles that travel in close coordination through a headway control mechanism. These vehicles maintain a short spacing between them and a relative velocity. The vehicle in the front position, called leader, represents the trajectory and velocity reference. It controls all the following vehicles in the platoon. Each vehicle of the platoon receives orders from the leader that may be communicated either directly or by the preceding vehicle.As platooning system is a critical system, safety is an important issue. However, safety is exposed to several challenges if the system does not achieve its goal without any disturbance. For instance, it is important to ensure that vehicles do not get too close and react within a certain time frame during emergencies. Then, platooning systems need to be validated to ensure a reliable behaviour. For that, it is necessary to clearly define validation strategies (formal verification, simulation, etc.) as this has already been used in critical fields like healthcare [3] and avionics [4]. That is why, we make emphasis in this paper on the works that deal with validation methods and techniques for platooning systems. Related Surveys and Scope of the PaperThere are several useful surveys which have been conducted to deal with some aspects related to platooning algorithms.In Kavathekar and Chen [5], the authors introduce several existing algorithms which focus on vehicle platooning. Besides, they detail some methodologies for obstacle detection and collision avoidance. Furthermore, they are interested in inter-vehicle communication techniques which allow vehicles to share some information such as the velocity, acceleration and detected obstacles. In the same context, the survey of Jia et al.[6] provides a valuable insight about platoon-based vehicular systems. The main issues related to these systems are analysed such as the platoon management and the communication inter-and intra-platoon.The study of Kulla et al. [7] presents a survey in which they introduce a classification of vehicular communication methods which aim to control vehicles. Moreover...
PurposeNowadays, connected vehicles are becoming quite complex systems which are made up of different devices. In such a vehicle, there are several electronic control units (ECUs) that represent basic units of computation. These ECUs communicate with each other over the Controller Area Network (CAN) bus protocol which ensures a high communication rate. Even though it is an efficient standard which provides communication for in-vehicle networks, it is prone to various cybersecurity attacks. This paper aims to present a systematic literature review (SLR) which focuses on potential attacks on CAN bus networks. Then, it surveys the solutions proposed to overcome these attacks. In addition, it investigates the validation strategies aiming to check their accuracy and correctness.Design/methodology/approachThe authors have adopted the SLR methodology to summarize existing research papers that focus on the potential attacks on CAN bus networks. In addition, they compare the selected papers by classifying them according to the adopted validation strategies. They identify also gaps in the existing literature and provide a set of open challenges that can significantly improve the existing works.FindingsThe study showed that most of the examined papers adopted the simulation as a validation strategy to imitate the system behavior and evaluate a set of performance criteria. Nevertheless, a little consideration has been given to the formal verification of the proposed systems.Originality/valueUnlike the existing surveys, this paper presents the first SLR that identifies local and remote security attacks that can compromise in-vehicle and inter-vehicle communications. Moreover, it compares the reviewed papers while focusing on the used validation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.