Objectives
To make a clear literature review on state-of-the-art heart disease prediction models.
Methods
It reviews 61 research papers and states the significant analysis. Initially, the analysis addresses the contributions of each literature works and observes the simulation environment. Here, different types of machine learning algorithms deployed in each contribution. In addition, the utilized dataset for existing heart disease prediction models was observed.
Results
The performance measures computed in entire papers like prediction accuracy, prediction error, specificity, sensitivity, f-measure, etc., are learned. Further, the best performance is also checked to confirm the effectiveness of entire contributions.
Conclusions
The comprehensive research challenges and the gap are portrayed based on the development of intelligent methods concerning the unresolved challenges in heart disease prediction using data mining techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.