DAB389IL‐2 (Denileukin diftitox) is considered an immunotoxin, and it is the first immunotoxin approved by Food and Drug Administration. It is used for the treatment of a cutaneous form of T‐cell lymphoma. This fusion protein has two disulfide bonds in its structure that play an essential role in toxicity and functionality of the immunotoxin. Escherichia coli (E. coli) strain BL21 (DE3) is not capable of making disulfide bonds in its reductive cytoplasm, but the E. coli strain Rosetta‐gami (DE3) is a proper strain for the correct expression of the protein due to mutations in glutaredoxin reductase and thioredoxin reductase. In this study, a pET21a vector with the His6‐tag fused at the N‐terminus of DAB389IL‐2 was used to express the soluble immunotoxin in E. coli Rosetta‐gami (DE3). After the purification of the soluble protein by two‐step column chromatographies, the structure of DAB389IL‐2 was analyzed using the Native‐PAGE and circular dichroism methods. In the following, the nuclease activity of soluble DAB389IL‐2 and its cytotoxicity activity were determined. It is concluded that the soluble recombinant protein expressed in the E. coli Rosetta‐gami (DE3) has an intact structure and also functional; hence, this form of immunotoxin could be competitive with its commercial counterparts.
Background:
DAB389IL-2 (Denileukin diftitox) as an immunotoxin is a targeted pharmaceutical
protein and is the first immunotoxin approved by FDA. It is used for the treatment of various
kinds of cancer such as CTCL lymphoma, melanoma, and Leukemia but among all of these, treatment
of CTCL has special importance. DAB389IL-2 consists of two distinct parts; the catalytic domain of
Diphtheria Toxin (DT) that genetically fused to the whole IL-2. Deamidation is the most important reaction
for chemical instability of proteins occurs during manufacture and storage. Deamidation of asparagine
residues occurs at a higher rate than glutamine residues. The structure of proteins, temperature
and pH are the most important factors that influence the rate of deamidation.
Methods:
Since there is not any information about deamidation of DAB389IL-2, we studied in silico
deamidation by Molecular Dynamic (MD) simulations using GROMACS software. The 3D model of
fusion protein DAB389IL-2 was used as a template for deamidation. Then, the stability of deamidated
and native form of the drug was calculated.
Results:
The results of MD simulations were showed that the deamidated form of DAB389IL-2 is more
unstable than the normal form. Also, deamidation was carried by incubating DAB389IL-2, 0.3 mg/ml in
ammonium hydrogen carbonate for 24 h at 37o C in order to in vitro experiment.
Conclusion:
The results of in vitro experiment were confirmed outcomes of in silico study. In silico
and in vitro experiments were demonstrated that DAB389IL-2 is unstable in deamidated form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.