Failure mechanisms of electro-mechanical systems usually involve several degraded health-states. Tracking and forecasting the evolution of health-states and impending failures, in the form of remaining-useful-life (RUL), is a critical challenge and regarded as the Achilles' heel of condition-basedmaintenance (CBM). This paper demonstrates how this difficult problem can be addressed through Hidden Markov models (HMMs) that are able to estimate unobservable health-states using observable sensor signals. In particular, implementation of HMM based models as dynamic Bayesian networks (DBNs) facilitates compact representation as well as additional flexibility with regard to model structure. Both regular HMM pools and hierarchical HMMs are employed here to estimate on-line the health-state of drill-bits as they deteriorate with use on a CNC drilling machine. Hierarchical HMM is composed of sub-HMMs in a pyramid structure, providing functionality beyond an HMM for modeling complex systems. In the case of regular HMMs, each HMM within the pool competes to represent a distinct health-state and adapts through competitive learning. In the case of hierarchical HMMs, health-states are represented as distinct nodes at the top of the hierarchy. Monte Carlo simulation, with state transition probabilities derived from a hierarchical HMM, is employed for RUL estimation. Detailed results on health-state and RUL estimation are very promising and are reported in this paper. Hierarchical HMMs seem to be particularly effective and efficient and outperform other HMM methods from literature. Note to Practitioners-Today's high competitive environment forces industry to decrease operating & support cost, whose one of the most contributing factors is maintenance and repair cost. Thus, industry is interested not only in the identification of failures, but also in identification of failure states, their progression and forecasting. This paper presents health state estimation and remaining useful life prediction in machining processes with a case study on drilling processes.
-Rolling element bearing failure is one of the foremost causes of breakdown in rotating machinery. It is not uncommon to replace a defected/used bearing with a new one that has shorter remaining useful life than the defected one. Thus, prognostics of bearing plays critical role for increased availability and reduced cost. Effective prognostics highly depend on the quality of the extracted features. Diagnostics is basically a classification problem, whereas the prognostics is the process of forecasting the future health states. The quality of the features for classification has been studied thoroughly. However, evaluation of the quality of features for prognostics is a relatively new problem. This paper presents an evaluation method for the goodness of the features for prognostics and presents results on bearings run until failure in a lab environment.
The importance of railway transportation has been increasing in the world. Considering the current and future estimates of high cargo and passenger transportation volume in railways, prevention or reduction of delays due to any failure is becoming ever more crucial. Railway turnout systems are one of the most critical pieces of equipment in railway infrastructure. When incipient failures occur, they mostly progress slowly from the fault free to the failure state. Although studies focusing on the identification of possible failures in railway turnout systems exist in the literature, neither the detection nor forecasting of failure progression has been reported. This paper presents a simple state-based prognostic method that aims to detect and forecast failure progression in electro-mechanical systems. The method is compared with Hidden Markov Model based methods on real data collected from a railway turnout system. Obtaining statistically sufficient failure progression samples is difficult considering that the natural progression of failures in electro-mechanical systems may take years. In addition, validating the classification model is difficult when the degradation is not observable. Data collection and model validation strategies for failure progression are also presented.
It is important to know the road traffic density real time especially in mega cities for signal control and effective traffic management. In recent years, video monitoring and surveillance systems have been widely used in traffic management. Hence, traffic density estimation and vehicle classification can be achieved using video monitoring systems. In most vehicle detection methods in the literature, only the detection of vehicles in frames of the given video is emphesized. However, further analysis is needed in order to obtain the useful information for traffic management such as real time traffic density and number of vehicle types passing these roads. This paper presents vehicle classification and traffic density calculation methods using neural networks. The paper also reports results from real traffic videos obtained from Istanbul Traffic Management Company (ISBAK).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.