Fractures occur in the shoulder area, which has a wider range of motion than other joints in the body, for various reasons. To diagnose these fractures, data gathered from X-radiation (X-ray), magnetic resonance imaging (MRI), or computed tomography (CT) are used. This study aims to help physicians by classifying shoulder images taken from X-ray devices as fracture/non-fracture with artificial intelligence. For this purpose, the performances of 26 deep learning-based pre-trained models in the detection of shoulder fractures were evaluated on the musculoskeletal radiographs (MURA) dataset, and two ensemble learning models (EL1 and EL2) were developed. The pre-trained models used are ResNet, ResNeXt, DenseNet, VGG, Inception, MobileNet, and their spinal fully connected (Spinal FC) versions. In the EL1 and EL2 models developed using pre-trained models with the best performance, test accuracy was 0.8455, 0.8472, Cohen’s kappa was 0.6907, 0.6942 and the area that was related with fracture class under the receiver operating characteristic (ROC) curve (AUC) was 0.8862, 0.8695. As a result of 28 different classifications in total, the highest test accuracy and Cohen’s kappa values were obtained in the EL2 model, and the highest AUC value was obtained in the EL1 model.
Hospitals, especially their emergency services, receive a high number of wrist fracture cases. For correct diagnosis and proper treatment of these, images obtained from various medical equipment must be viewed by physicians, along with the patient’s medical records and physical examination. The aim of this study is to perform fracture detection by use of deep-learning on wrist X-ray images to support physicians in the diagnosis of these fractures, particularly in the emergency services. Using SABL, RegNet, RetinaNet, PAA, Libra R-CNN, FSAF, Faster R-CNN, Dynamic R-CNN and DCN deep-learning-based object detection models with various backbones, 20 different fracture detection procedures were performed on Gazi University Hospital’s dataset of wrist X-ray images. To further improve these procedures, five different ensemble models were developed and then used to reform an ensemble model to develop a unique detection model, ‘wrist fracture detection-combo (WFD-C)’. From 26 different models for fracture detection, the highest detection result obtained was 0.8639 average precision (AP50) in the WFD-C model. Huawei Turkey R&D Center supports this study within the scope of the ongoing cooperation project coded 071813 between Gazi University, Huawei and Medskor.
Monkeypox, a virus transmitted from animals to humans, is a DNA virus with two distinct genetic lineages in central and eastern Africa. In addition to zootonic transmission through direct contact with the body fluids and blood of infected animals, monkeypox can also be transmitted from person to person through skin lesions and respiratory secretions of an infected person. Various lesions occur on the skin of infected individuals. This study has developed a hybrid artificial intelligence system to detect monkeypox in skin images. An open source image dataset was used for skin images. This dataset has a multi-class structure consisting of chickenpox, measles, monkeypox and normal classes. The data distribution of the classes in the original dataset is unbalanced. Various data augmentation and data preprocessing operations were applied to overcome this imbalance. After these operations, CSPDarkNet, InceptionV4, MnasNet, MobileNetV3, RepVGG, SE-ResNet and Xception, which are state-of-the-art deep learning models, were used for monkeypox detection. In order to improve the classification results obtained in these models, a unique hybrid deep learning model specific to this study was created by using the two highest-performing deep learning models and the long short-term memory (LSTM) model together. In this hybrid artificial intelligence system developed and proposed for monkeypox detection, test accuracy was 87% and Cohen’s kappa score was 0.8222.
Heart sounds have been extensively studied for heart disease diagnosis for several decades. Traditional machine learning algorithms applied in the literature have typically partitioned heart sounds into small windows and employed feature extraction methods to classify samples. However, as there is no optimal window length that can effectively represent the entire signal, windows may not provide a sufficient representation of the underlying data. To address this issue, this study proposes a novel approach that integrates window-based features with features extracted from the entire signal, thereby improving the overall accuracy of traditional machine learning algorithms. Specifically, feature extraction is carried out using two different time scales. Short-term features are computed from five-second fragments of heart sound instances, whereas long-term features are extracted from the entire signal. The long-term features are combined with the short-term features to create a feature pool known as long short-term features, which is then employed for classification. To evaluate the performance of the proposed method, various traditional machine learning algorithms with various models are applied to the PhysioNet/CinC Challenge 2016 dataset, which is a collection of diverse heart sound data. The experimental results demonstrate that the proposed feature extraction approach increases the accuracy of heart disease diagnosis by nearly 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.