The resort worldwide to edible medicinal plants for medical care has increased significantly during the last few years. Currently, there is a renewed interest in the search for new phytochemicals that could be developed as useful anti-inflammatory and anti-allergic agents to reduce the risk of many diseases. The activation of nuclear transcription factor-kappa B (NF-κB) has now been linked to a variety of inflammatory diseases, while data from numerous studies underline the importance of phytochemicals in inhibiting the pathway that activates this transcription factor. Moreover, the incidence of type I allergic disorders has been increasing worldwide, particularly, the hypersensitivity to food. Thus, a good number of plant products with anti-inflammatory and anti-allergic activity have been documented, but very few of these compounds have reached clinical use and there is scant scientific evidence that could explain their mode of action. Therefore, this paper intends to review the most salient recent reports on the anti-inflammatory and anti-allergic properties of phytochemicals and the molecular mechanisms underlying these properties.
In order to assess their physicochemical and antioxidant properties as well as their antimicrobial potency, four varieties of honey from different botanical and geographical origins were used. The agar incorporation method was used to determine the antimicrobial potency of honeys. The total phenol content was determined by a modified Folin–Ciocalteu method and the free radical scavenging activity by the Fe3+ reducing power (FRAP) assay. Manuka honey was the most effective against Staphylococcus aureus Oxa R and S. aureus Oxa S with a Minimum Inhibitory Concentration (MIC) of 6% and 7%, respectively, whereas wild carrot honey was the most effective against Pseudomonas aeruginosa, with a MIC of 12%. Lavender honey was the least effective against all tested strains, even though was found to have the lowest pH and water content. Manuka honey had the highest content of polyphenols, with 899.09 ± 11.75 mg gallic acid/kg, whereas lavender honey had the lowest, with 111.42 ± 3.54 mg gallic acid/kg. A very significant correlation (r value was 0.9079 at P < 0.05) was observed between the total polyphenolic content and the Fe2+ content formed in the presence of the honey antioxidants. The differences between honey samples in terms of antibacterial and antioxidant activity could be attributed to the natural variations in floral sources of nectar and the different locations.
It is well established that honey contains substantial antioxidant compounds that could protect cell components from the harmful action of free radicals. One can speculate that these compounds may strengthen the organism defenses and consequently prevent oxidative stress in humans. Therefore, over time, impaired cells can accumulate and lead to age-related diseases. A comparative study was carried out to assess the antioxidant activity of three varieties of honey from different botanical and geographical (Manuka honey from New Zealand, Acacia Honey from Germany and Wild carrot honey from Algeria). Manuka honey had the highest phenolic content with 899.09 ± 11.75 mg gallic acid/kg. A strong correlation between the antioxidant activities of honeys and their total phenol contents has been noticed.
Recently, much interest has been generated for a wide range of phyto-constituents with reports demonstrating their role in the modulation of inflammatory responses, including phenolics, alkaloids, and terpenoids. Natural products have long been, over the years, contributed to the development of modern therapeutic drugs. At present, steroids, antihistaminic drugs, suppressants or inhibitors of the release of mediators and the like have been used as anti-allergic agents. However, some of them lack immediate effectiveness or have central side effects. Drug discovery from plants involves a multidisciplinary approach combining botanical, ethno-botanical, phytochemical and biological techniques. Several natural product drugs of plant origin are in clinical use and some are undergoing Phase II and Phase III clinical trials. A major effort was directed toward discovery of novel anti-inflammatory and anti-allergic agents, which resulted in the invention of several patented formulations. These formulations concern a variety of pharmaceutical preparations which can be used as solid or liquid dosage forms or encapsulated as a soft or hard gelatin capsule. The present article is a short review of recent patents on the role of phytochemicals in preventing inflammation and allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.