Summary: Random copolymers of poly(styrene‐co‐4‐vinylpyridine) (S4VP) and poly (styrene‐co‐2‐hydroxyethyl acrylate) (SHEA) of different compositions were prepared and characterized. An investigation of the effects of solvent and densities of the interacting species incorporated within these copolymers showed that novel and various hydrogen bonding interpolymer complexes of different structures were elaborated when these copolymers are mixed together. The specific interactions that occurred within the SHEA copolymers and the elaborated complexes were evidenced by FTIR qualitatively from the appearance of a new band at 1604 cm−1 and quantitatively using appropriate spectral curve fitting in the carbonyl and pyridine regions. The intermolecular hydrogen bonding interactions that occurred between the hydroxyl groups of the SHEA and the nitrogen atom of the pyridine groups in the S4VP are stronger than the self‐associations within the SHEA. In the solid state, a DSC analysis showed that the variation of the glass transition temperatures of these materials with the composition behaved differently with the densities of interacting species and were analyzed quantitatively. A thermal stability study of the synthesized copolymers and of their different mixtures carried by thermogravimetry confirmed a similar behaviour.
Amphiphilic copolymers of poly(styrene-co-2-hydroxyethyl acrylate) (SHEA) and poly(styrene-co-N, Ndimethylacrylamide) (SAD) of different compositions were prepared by free radical copolymerization and characterized by different techniques. Depending on the nature of the solvent and the densities of interacting species incorporated within the polystyrene matrices, novel materials as blends or interpolymer complexes with properties different from those of their constituents were elaborated when these copolymers are mixed together. The specific interpolymer interactions of hydrogen bonding type and the phase behavior of the elaborated materials were investigated by differential scanning calorimetry (DSC) and Fourier transform infra red spectroscopy (FTIR). The specific interactions of hydrogen bonding type that occurred within the SHEA and within their blends with the SAD were evidenced by FTIR qualitatively by the appearance of a new band at 1626 cm À1 and quantitatively using appropriate spectral curve fitting in the carbonyl and amide regions. The variation of the glass transition temperature with the blend composition behaved differently with the densities of interacting species. The thermal degradation behavior of the materials was studied by thermogravimetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.