In this work, the problem of Fault Detection and Isolation (FDI) and Fault Tolerant Control (FTC) of wind turbines is addressed. Fault detection is based on the use of interval observers and unknown but bounded description of the noise and modeling errors. Fault isolation is based on analyzing the observed fault signatures on-line and matching them with the theoretical ones obtained using structural analysis and a row-reasoning scheme. Fault tolerant control is based on the use of virtual sensors/actuators to deal with sensor and actuator faults, respectively. More precisely, these FTC schemes, that have been proposed previously in state space form, are reformulated in input/output form. Since an active FTC strategy is used, the FTC module uses the information from the FDI module to replace the real faulty sensor/actuator by activating the corresponding virtual sensor/actuator. Virtual actuators/sensors require additionally a fault estimation module to compensate the fault. In this work, a fault estimation approach based on batch least squares is used. The performance of the proposed FDI and FTC schemes is assessed using the proposed fault scenarios considered in the wind turbine benchmark proposed at IFAC SAFEPROCESS 2009. Satisfactory results have been obtained in both FDI and FTC.
SUMMARYThe paper presents a robust fault estimation approach for a class of non-linear discrete-time systems. In particular, two sources of uncertainty are present in the considered class of systems, i.e., an unknown input and an exogenous external disturbance. Thus, apart from simultaneous state and fault estimation, the objective is to decouple the effect of an unknown input while minimizing the influence of the exogenous external disturbance within the H∞ framework. The resulting design procedure guarantees that a prescribed disturbance attenuation level is achieved with respect to the state and fault estimation error while assuring the convergence of the observer. The core advantage of the proposed approach is its simplicity by reducing the fault estimation problem to matrix inequalities formulation. In addition, the design conditions ensure the convergence of the observer with guaranteed H∞ performance. The effectiveness of the proposed approach is demonstrated by its application to a Twin Rotor MIMO System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.