Abstract. Exploiting identity links among RDF resources allows applications to efficiently integrate data. Keys can be very useful to discover these identity links. A set of properties is considered as a key when its values uniquely identify resources. However, these keys are usually not available. The approaches that attempt to automatically discover keys can easily be overwhelmed by the size of the data and require clean data. We present SAKey, an approach that discovers keys in RDF data in an efficient way. To prune the search space, SAKey exploits characteristics of the data that are dynamically detected during the process. Furthermore, our approach can discover keys in datasets where erroneous data or duplicates exist (i.e., almost keys). The approach has been evaluated on different synthetic and real datasets. The results show both the relevance of almost keys and the efficiency of discovering them.
Abstract. The reference reconciliation problem consists in deciding whether different identifiers refer to the same data, i.e. correspond to the same real world entity. In this article we present a reference reconciliation approach which combines a logical method for reference reconciliation called L2R and a numerical one called N2R. This approach exploits the schema and data semantics, which is translated into a set of Horn FOL rules of reconciliation. These rules are used in L2R to infer exact decisions both of reconciliation and non-reconciliation. In the second method N2R, the semantics of the schema is translated in an informed similarity measure which is used by a numerical computation of the similarity of reference pairs. This similarity measure is expressed in a non linear equation system, which is solved by using an iterative method. The experiments of the methods made on two different domains, show good results for both recall and precision. They can be used separately or in combination. We have shown that their combination allows to improve runtime performance.
In the context of Linked Data, different kinds of semantic links can be established between data. However when data sources are huge, detecting such links manually is not feasible. One of the most important types of links, the identity link, expresses that different identifiers refer to the same real world entity. Some automatic data linking approaches use keys to infer identity links, nevertheless this kind of knowledge is rarely available. In this work we propose KD2R, an approach which allows the automatic discovery of composite keys in RDF data sources that may conform to different schemas. We only consider data sources for which the Unique Name Assumption is fulfilled. The obtained keys are correct with respect to the RDF data sources in which they are discovered. The proposed algorithm is scalable since it allows the key discovery without having to scan all the data. KD2R has been tested on real datasets of the international contest OAEI 2010 and on data sets available on the web of data, and has obtained promising results.
In the absence of a central naming authority on the Semantic Web, it is common for different datasets to refer to the same thing by different IRIs. Whenever multiple names are used to denote the same thing, owl:sameAs statements are needed in order to link the data and foster reuse. Studies that date back as far as 2009, have observed that the owl:sameAs property is sometimes used incorrectly. In this paper, we show how network metrics such as the community structure of the owl:sameAs graph can be used in order to detect such possibly erroneous statements. One benefit of the here presented approach is that it can be applied to the network of owl:sameAs links itself, and does not rely on any additional knowledge. In order to illustrate its ability to scale, the approach is evaluated on the largest collection of identity links to date, containing over 558M owl:sameAs links scraped from the LOD Cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.