The rapid evolution of social networks in recent years has focused the attention of researchers to find adequate solutions for the management of these networks. For this purpose, several efficient algorithms dedicated to the tracking and the rapid detection of the community structure have been proposed. In this paper, we propose a novel density-based approach with dual optimization for tracking community structure of increasing social networks. These networks are part of dynamic networks evolving by adding nodes with their links. The local optimization of the density makes it possible to reduce the resolution limit problem generated by the optimization of the modularity. The presented algorithm is incremental with a relatively low algorithmic complexity, making it efficient and faster. To demonstrate the effectiveness of our method, we test it on social networks of the real world. The experimental results show the performance and efficiency of our algorithm measured in terms of modularity density, modularity, normalized mutual information, number of communities discovered, running time and stability of communities.
In this paper, we describe a method for clustering XML documents. Its goal is to group documents sharing similar structures. Our approach is two-step. We first automatically extract the structure from each XML document to be classified. This extracted structure is then used as a representation model to classify the corresponding XML document. The idea behind the clustering is that if XML documents share similar structures, they are more likely to correspond to the structural part of the same query. Finally, for the experimentation purpose, we tested our algorithms on both real (ACM SIGMOD Record corpus) and synthetic data. The results clearly demonstrate the interest of our approach.
In recent years, community detection in dynamic networks has received great interest. Due to its importance, many surveys have been suggested. In these surveys, the authors present and detail a number of methods that identify a community without taking into account the incremental methods which, in turn, also take an important place in dynamic community detection methods. In this survey, we provide a review of incremental approaches to community detection in both fully and growing dynamic networks. To do this, we have classified the methods according to the type of network. For each type of network, we describe three main approaches: the first one is based on modularity optimization; the second is based on density; finally, the third is based on label propagation. For each method, we list the studies available in the literature and state their drawbacks and advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.