Inflammation has a pivotal role in the development of atherosclerosis and acute activation of the vascular wall with consecutive local thrombosis and altered vasomotion. This process is orchestrated by the interactions between inflammatory cells, such as platelets and T and B lymphocytes, and vascular cells, endothelial cells, and smooth muscle cells. When they are activated by an agonist, shear stress, or apoptosis, these cells release vesicles shed from the blebbing plasma membrane called microparticles. Microparticles harbor cell surface proteins and contain cytoplasmic components of the original cell. They exhibit negatively charged phospholipids, chiefly phosphatidylserine, at their surface, which accounts for their procoagulant character and proinflammatory properties, including alteration of vascular function. Elevated levels of circulating microparticles have been detected in pathological states associated with vascular dysfunction, including attenuation of endothelium-dependent vasodilatation and/or alteration of responsiveness of vascular smooth muscle to vasoconstrictor stimuli in conductance and resistance arteries. This review points out the characteristics of microparticles as well as the biological messages they can mediate. In particular, it summarizes the signaling cascades involved in microparticle-induced vascular dysfunction with special attention to the cellular origin of these vesicles (platelet, endothelial, and leukocytic), which may explain their differential consequences on vascular remodeling. The available information provides a rationale for the paracrine role of microparticles as vectors of transcellular exchange of message between circulating cells and cells from the vascular wall.
Tumor microenvironment is enriched in plasma membrane microvesicles (MV) shed from all cell types that constitute the tumor mass, reflecting the antigenic profile of the cells they originate from. Fibroblasts and tumor cells mutually communicate within tumor microenvironment. Recent evidences suggest that tumor-derived MVs (TMV) exert a broad array of biological functions in cell-to-cell communication. To elucidate their role in cancer-to-fibroblast cell communication, TMV obtained from two prostate carcinoma cell lines with high and weak metastatic potential (PC3 and LnCaP, respectively) have been characterized. TMV exhibit matrix metalloproteinases (MMP) and extracellular MMP inducer at their surface, suggesting a role in extracellular matrix degradation. Moreover, TMV not only induce the activation of fibroblasts assessed through extracellular signal-regulated kinase 1/2 phosphorylation and MMP-9 up-regulation, increase motility and resistance to apoptosis but also promote MV shedding from activated fibroblasts able in turn to increase migration and invasion of highly metastatic PC3 cells but not LnCaP cells. PC3 cell chemotaxis seems, at least partially, dependent on membrane-bound CX3CL1/fractalkine ligand for chemokine receptor CX3CR1. The present results highlight a mechanism of mutual communication attributable not only to soluble factors but also to determinants harbored by MV, possibly contributing to the constitution of a favorable niche for cancer development. [Cancer Res 2009;69(3):785-93]
Circulating markers of endothelium damage, proinflammatory markers, and cell stimulation estimated with circulating microparticles appear to be valuable tools in determining the severity of PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.