Assessing and mapping the vulnerability of gully erosion in mountainous and semi-arid areas is a crucial field of research due to the significant environmental degradation observed in such regions. In order to tackle this problem, the present study aims to evaluate the effectiveness of three commonly used machine learning models: Random Forest, Support Vector Machine, and Logistic Regression. Several geographic and environmental factors including topographic, geomorphological, environmental, and hydrologic factors that can contribute to gully erosion were considered as predictor variables of gully erosion susceptibility. Based on an existing differential GPS survey inventory of gully erosion, a total of 191 eroded gullies were spatially randomly split in a 70:30 ratio for use in model calibration and validation, respectively. The models’ performance was assessed by calculating the area under the ROC curve (AUC). The findings indicate that the RF model exhibited the highest performance (AUC = 89%), followed by the SVM (AUC = 87%) and LR (AUC = 87%) models. Furthermore, the results highlight those factors such as NDVI, lithology, drainage, and density were the most influential, as determined by the RF, SVM, and LR methods. This study provides a valuable tool for enhancing the mapping of soil erosion and identifying the most important influencing factors that primarily cause soil deterioration in mountainous and semi-arid regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.