There are a lot of research studies that look at "fake news" from an Arabic online source, but they don't look at what makes those fake news spread. The threat grows, and at some point, it gets out of hand. That's why this paper is trying to figure out how to predict the features that make Arabic online fake news spread. It's using Naive Bayes, Logistic Regression, and Random forest of Machine Learning to do this. Online news stories that were made up were used. They are found by using Term Frequency-Inverse Document Frequency (TF-IDF). The best partition for testing and validating the prediction was chosen at random and used in the analysis. So, all three machine learning classifications for predicting fake news in Arabic online were done. The results of the experiment show that Random Forest Classifier outperformed the other two algorithms. It had the best TF-IDF with an accuracy of 86 percent. Naive Bayes had an accuracy rate of 84%, and Logistic Regression had an accuracy rate of 85%, so they all did well. As such, the model shows that the features in TF-IDF are the most essential point about the content of an online Arabic fake news.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.