With their many advantages, including low power dissipation in power switches, low harmonic content, and reduced electromagnetic interference (EMI) from the inverter, multilevel converter (MLI) topologies are becoming more and more in demand in high and medium power applications. This paper introduces a novel multi-level symmetric inverter topology with adopted control. The objectives of this article are to architecturally define the positions of the various switches, to choose the right switches and to propose an inverter control strategy that will eliminate harmonics while producing the ideal output voltage/current. By using fewer switching elements, fewer voltage sources, and switches with a total harmonic content (THD) which reduces losses and a drop in minimum voltage (Vstrssj), the proposed topology is more efficient than conventional inverters with the same number of levels. The new topology will be demonstrated using a seven-level single-phase inverter. For various modulation indices, MATLAB-SIMULINK is used to study and validate the topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.