We have carried out a detailed atomic simulation study of molecular order within a chromonic liquid crystalline material (sunset yellow) in aqueous solution. Self-assembly occurs in dilute solutions to form stacked aggregates, which show a preference for head-to-tail stacking and antiparallel dipole order. This feature is independent of solution concentration and aggregate size. Stacks are found to be dynamic entities in which rotational transitions (flips) can occur between antiparallel and parallel configurations. At a concentration matching the nematic phase of sunset yellow, the simulations show chromonic columns with a loose hexagonal packing and an intercolumn distance of 2.36 nm. Partial condensation of sodium ions occurs around a chromonic stack, with two preferred binding sites identified for sodium ions, corresponding to strong binding with the oxygens of a sulfonate group and a bridging site between a pair of molecules in a stack. A value for the free energy of binding of a molecule to a stack of 7 k(B)T was obtained for stacks of three and eight molecules, with a slightly larger value (additional 2 kJ mol(-1)) obtained for the dimer binding energy, indicating that aggregation is approximately isodesmic.
EPR studies combined with fully atomistic Molecular Dynamics (MD) simulations and an MD-EPR simulation method provide evidence for intrinsic low rotameric mobility of a nitroxyl spin label, Rn, compared to the more widely employed label MTSL (R1). Both experimental and modelling results using two structurally different sites of attachment to Myoglobin show that the EPR spectra of Rn are more sensitive to the local protein environment than that of MTSL. This study reveals the potential of using the Rn spin label as a reporter of protein motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.