The organic dormancy of Ceratonia seeds is associated with their water resistance, which means that Carob suffers from difficulty in natural regeneration. Before planting Carob seeds must be treated in order to disturb mechanical dormancy. The main reasons for the decline in genus Ceratonia L. are anthropogenic impact on natural ecosystems, as well as the uses of Ceratonia for many goals. This problem is aggravated by the fact that seedlings of Ceratonia in nature are very rare because of organic dormancy, and the distribution of carob occurs mainly with the help of seeds. The aim of this work was to study the methods of pre-sowing treatment of dormant Carob seeds. This study was conducted on a wild Carob genotype grown in Syria. Four different pre-sowing treatments were the following: soaking in boiling distilled water (70 С) for 10 min; soaking in boiling distilled water (70 С) for 10 min + soaking in distilled water for 24 h; acid scarification with sulphuric acid (H2SO4); acid scarification with sulphuric acid (H2SO4) + soaking in distilled water for 24 h. We applied and examined for their effectiveness stimulation of Carob seed germination. The results showed that seeds treated with sulphuric acid (H2SO4) and then soaked in distilled water for 24 h was the most effective method increasing the germination percentage by 98 % compared to untreated seeds 5 %.
Objective:The objective of the present study was to evaluate heterozygosis in cattle population, and to characterize White Fulani breed by identifying DNA markers considering microsatellites.Materials and Methods:A total of 41 cattle were randomly selected and used for sample (wool) collection for the characterization and identification of phenotypic traits of cattle in Nigeria. The DNA samples from the samples were prepared. Twelve microsatellite primers were used for the microsatellite analysis in the genomic DNA of cattle. The reinforced products were analyzed to determine polymorphic alleles and their frequencies.Results:White Fulani is characterized by a high degree of genetic diversity. The microsatellites have multiple alleles and may show heterozygosity frequencies of at least 70%. White Fulani cows and their F1 descendants form a common cluster, to which the bulls of the Kuru and Red Boro breeds are adjacent. There is a clear differentiation of purebred populations of Tajik zebu-like cattle (Q = 98.7%) and a significant proportion of white Fulani (Q = 81.8%) from Nigeria. The microsatellite analysis of zebu of Nigeria allowed identifying a total of 80 alleles. In the KURU and PAX-KR-BOR rocks, 17 and 19 alleles were identified, respectively. In F1, 51 alleles were detected.Conclusion:White Fulani cattle are characterized by a high degree of genetic diversities. This makes it a highly informative source in genetic analysis. The results can be applied in dealing with the conservation and sustainable applications of genetic resources in the Nigerian cattle population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.