The objective of this study was to evaluate the antibacterial activity of
Cinnamomum cassia
(cinnamon) essential oil (EO) alone and in combination with some classical antibiotics against three multidrug-resistant bacteria,
Escherichia coli
,
Staphylococcus aureus
, and
Pseudomonas aeruginosa
, to search a possible synergy. The antibacterial activity of all tested compounds was determined by agar disc diffusion and minimum inhibitory concentration assays. The checkerboard method was used to quantify the efficacy of cinnamon EO in combination with these antibiotics. Fractional inhibitory concentrations were calculated and interpreted as synergy, addition, indifferent, or antagonism. A synergistic interaction was shown against
S. aureus
with the combination cinnamon EO and ampicillin or chloramphenicol and against
E. coli
when cinnamon EO was combined with chloramphenicol. However, the combination of cinnamon oil and streptomycin displayed additive effects against all bacteria stains. The combinations of cinnamon EO and antibiotics can be used as an alternative therapeutic application, which can decrease the minimum effective dose of the drugs, thus reducing their possible adverse effects and the costs of treatment.
Objective: The aim of the current study is to determine the chemical composition and evaluate antibacterial activity of Vitex agnus-castus L. (VAC) essential oils against some bacteria causing nosocomial infections in the neonatal and intensive care rooms at the university hospital center of Fez Morocco. Methods: The phytochemical screening of essential oils was determined using gas chromatography (GC) and GC-mass spectrometry analysis. The antibacterial test was evaluated against Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria species (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis) using disc diffusion method. Results: Twenty-nine components were identified in the fruits’ oil representing 93.1% of total oil. The major components in the fruits oil are 1,8-cineole (11.6%), α-thujene (9.3%), phyllocladene (8.2%), α-pinene (7.9%), caryophyllene (5.9%), and cubenol (5%). Furthermore, 28 components were identified in the leaf essential oil. The main component was caryophyllene (9.5%), followed by 1,8-cineole (8.7%), manoyl oxide (7.3%), eugenyl acetate (7.1%), phyllocladene (6.8%), and α-pinene (5.2%). Antibacterial activity of both oils showed a strong activity against nosocomial bacteria tested. Conclusion: Essential oils of Moroccan VAC could be exploited as natural drugs for bacteria, especially those who have acquired resistance to conventional antibiotics.
Daucosterol is a saponin present in various natural sources, including medicinal plant families. This secondary metabolite is produced at different contents depending on species, extraction techniques, and plant parts used. Currently, daucosterol has been tested and explored for its various biological activities. The results reveal potential pharmacological properties such as antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, immunomodulatory, neuroprotective, and anticancer. Indeed, daucosterol possesses important anticancer effects in many signaling pathways, such as an increase in pro-apoptotic proteins Bax and Bcl2, a decrease in the Bcl-2/Bax ratio, upregulation of the phosphatase and tensin homolog (PTEN) gene, inhibition of the PI3K/Akt pathway, and distortion of cell-cycle progression and tumor cell evolution. Its neuroprotective effect is via decreased caspase-3 activation in neurons and during simulated reperfusion (OGD/R), increased IGF1 protein expression (decreasing the downregulation of p-AKT3 and p-GSK-3b4), and activation of the AKT5 signaling pathway. At the same time, daucosterol inhibits key glucose metabolism enzymes to keep blood sugar levels within normal ranges. Therefore, this review describes the principal research on the pharmacological activities of daucosterol and the mechanisms of action underlying some of these effects. Moreover, further investigation of pharmacodynamics, pharmacokinetics, and toxicology are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.