Summary: We generated two complementary systems for Cre-mediated recombination of target genes in the mouse digestive epithelium and tested them with a Crereporter mouse strain. Cre was expressed under the control of a 9 kb regulatory region of the murine villin gene (vil-Cre). Genetic recombination was initiated at embryonic day (E) 9 in the visceral endoderm, and by E12.5 in the entire intestinal epithelium, but not in other tissues. Cre expression was maintained throughout adulthood. Furthermore, transgenic mice bearing a tamoxifen-dependent Cre recombinase (vil-Cre-ER T2 ) expressed under the control of the villin promoter were created to perform targeted spatiotemporally controlled somatic recombination. After tamoxifen treatment, recombination was detectable throughout the digestive epithelium. The recombined locus persisted for 60 days after tamoxifen administration, despite rapid intestinal cell renewal, indicating that epithelial progenitor cells had been targeted. The villin-Cre and villin-Cre-ER T2 mice provide valuable tools for studies of cell lineage allocation and gene function in the developing and adult intestine. genesis 39: 186 -193, 2004.
At the time of fertilization, the paternal genome lacks the typical configuration and marks characteristic of pericentric heterochromatin. It is thus essential to understand the dynamics of this region during early development, its importance during that time period and how a somatic configuration is attained. Here, we show that pericentric satellites undergo a transient peak in expression precisely at the time of chromocenter formation. This transcription is regulated in a strand-specific manner in time and space and is strongly biased by the parental asymmetry. The transcriptional upregulation follows a developmental clock, yet when replication is blocked chromocenter formation is impeded. Furthermore, interference with major satellite transcripts using locked nucleic acid (LNA)-DNA gapmers results in developmental arrest before completion of chromocenter formation. We conclude that the exquisite strand-specific expression dynamics at major satellites during the 2-cell stage, with both up and downregulation, are necessary events for proper chromocenter organization and developmental progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.