Most Chlorinated Poly Vinyl Chloride (CPVC) resins contain 63-69 % chlorine, in particular those used for the extrusion of plumbing tubes, due to this chlorination of basic PVC, CPVC offers a mixture of corrosion resistance and low installation costs for its main applications requiring service in non-ambient conditions. CPVC replaces copper owing to its economic gain and by virtue of its pressure resistance characteristics. In this article, we have been interested in fracture analysis and damage modeling of CPVC tubes by subject CPVC samples to burst pressure tests. We performed a set of burst tests on virgin and artificially damaged CPVC pipe at different notch lengths, then submitted the specimens to burst pressure tests, in addition to recording the pressure and time during these tests for use in conducting the study. The results of the burst tests were exploited to estimate the damage and reliability of the material, these two parameters allow us to follow the degradation of the pipes used; subsequently, we determined a new relationship between these two parameters through the fraction life. This makes it possible to predict the moment of damage acceleration and to intervene at the right time for engaging predictive maintenance.
The Chlorinated Polyvinyl Chloride pipes used for the supply of cold and hot water are designed and manufactured for a 50 years predictive life, but defects and harmfulness may occur during the transport process, storage and operation of tubes that significantly affect these forecasts. This work deals with the study of the mechanical behavior of Chlorinated Polyvinyl Chloride (CVPC) specimens subjected to tensile tests under the effect of temperature. Moreover, a study of damage evolution by the ultimate energy makes it possible to determine the three stages of the lifetime of the test pieces studied. On the basis of the stress-strain variation curves plotted from the experimental results, the critical value of the fraction of life corresponding to the acceleration of the damage was determined.
In this paper we are studying the effects of temperatures ranging from-10 to 70°C of behavior on chlorinated PVC (CPVC), whose direct consequences are the strong modifications of the mechanical and physical characteristics of this polymer [1]. The purpose of this paper is to predict the damage of non-weld CPVC, based on simple tensile tests on non weld specimens. Thereafter and with the establishment of the relation Damage-Reliability, the critical life fraction βc is identified that predicts the time at which the damage becomes sudden and it is necessary to calculate the reliability and predictive maintenance of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.