The tropical climate of Thailand encourages very high mosquito densities in certain areas and is ideal for dengue transmission, especially in the southern region where the province Nakhon Si Thammarat is located. It has the longest dengue fever transmission duration that is affected by some important climate predictors, such as rainfall, number of rainy days, temperature and humidity. We aimed to explore the relationship between weather variables and dengue and to analyse transmission hotspots and coldspots at the district-level. Poisson probability distribution of the generalized linear model (GLM) was used to examine the association between the monthly weather variable data and the reported number of dengue cases from January 2002 to December 2018 and geographic information system (GIS) for dengue hotspot analysis. Results showed a significant association between the environmental variables and dengue incidence when comparing the seasons. Temperature, sea-level pressure and wind speed had the highest coefficients, i.e. β=0.17, β= –0.12 and β= –0.11 (P<0.001), respectively. The risk of dengue incidence occurring during the rainy season was almost twice as high as that during monsoon. Statistically significant spatial clusters of dengue cases were observed all through the province in different years. Nabon was identified as a hotspot, while Pak Phanang was a coldspot for dengue fever incidence, explained by the fact that the former is a rubber-plantation hub, while the agricultural plains of the latter lend themselves to the practice of pisciculture combined with rice farming. This information is imminently important for planning apt sustainable control measures for dengue epidemics.
The 3-5year epidemic cycle of dengue fever in Thailand makes it a major re-emerging public health problem resulting in being a burden in endemic areas. Although the Thai Ministry of Public Health adopted the WHO dengue control strategy, all dengue virus serotypes continue to circulate. Health officers and village health volunteers implement some intervention options but there is a need to ascertain most appropriate (or a combination of) interventions regarding the environment and contextual factors that may undermine the effectiveness of such interventions. This study aims to understand the dengue-climate relationship patterns at the district level in the southern region of Thailand from 2002 to 2018 by examining the statistical association between dengue incidence rate and eight environmental patterns, testing the hypothesis of equal incidence of these. Data on environmental variables and dengue reported cases in Nakhon Si Thammarat province situated in the south of Thailand from 2002 to 2018 were analysed to (1) detect the environmental factors that affect the risk of dengue infectious disease; to (2) determine if disease risk is increasing or decreasing over time; and to (3) identify the high-risk district areas for dengue cases that need to be targeted for interventions. To identify the predictors that have a high and significant impact on reported dengue infection, three steps of analysis were used. First, we used Partial Least Squares (PLS) Regression and Poisson Regression, a variant of the Generalized Linear Model (GLM). Negative co-efficient in correspondence with the PLS components suggests that sea-level pressure, wind speed, and pan evaporation are associated with dengue occurrence rate, while other variables were positively associated. Using the Akaike information criterion in the stepwise GLM, the filtered predictors were temperature, precipitation, cloudiness, and sea level pressure with the standardized coefficients showing that the most influential variable is cloud cover (three times more than temperature and precipitation). Also, dengue occurrence showed a constant negative response to the average increase in sea-level pressure values. In southern Thailand, the predictors that have been locally determined to drive dengue occurrence are temperature, rainfall, cloud cover, and sea-level pressure. These explanatory variables should have important future implications for epidemiological studies of mosquito-borne diseases, particularly at the district level. Predictive indicators guide effective and dynamic risk assessments, targeting pre-emptive interventions.
Knowledge, Attitudes and Practices (KAP) surveys precede an awareness or intervention program, it addresses a felt need in a population in which that need exists. In an endemic region of cutaneous leishmaniasis disease occurrence, public enlightenment on its preventive and control measures is highly important. Ilam province of Iran is a provincial border town transited annually by pilgrims was reported to have the most cases of cutaneous leishmaniasis ranking highest since 2010 yet no report on KAP survey has been previously conducted.
Background More than half of the global population is predicted to be living in areas susceptible to dengue transmission with the vast majority in Asia. Dengue fever is of public health concern, particularly in the southern region of Thailand due to favourable environmental factors for its spread. The risk of dengue infection at the population level varies in time and space among sub-populations thus, it is important to study the risk of infection considering spatio-temporal variation. Methods This study presents a joint spatio-temporal epidemiological model in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation with the CARBayesST package of R software. For this purpose, monthly dengue records by district from 2002 to 2018 from the southern region of Thailand provided by the Ministry of Public Health of Thailand and eight environmental variables were used. Results Results show that an increasing level of temperature, number of rainy days and sea level pressure are associated with a higher occurrence of dengue fever and consequently higher incidence risk, while an increasing level of wind speed seems to suggest a protective factor. Likewise, we found that the elevated risks of dengue in the immediate future are in the districts of Phipun, Phrom Kili, Lan Saka, Phra Phrom and Chaloem Phakiat. The resulting estimates provide insights into the effects of covariate risk factors, spatio-temporal trends and dengue-related health inequalities at the district level in southern Thailand. Conclusion Possible implications are discussed considering some anthropogenic factors that could inhibit or enhance dengue occurrence. Risk maps indicated which districts are above and below baseline risk, allowing for the identification of local anomalies and high-risk boundaries. In the event of near future, the threat of elevated disease risk needs to be prevented and controlled considering the factors underlying the spread of mosquitoes in the Southeast Asian region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.