Mapping global parasite diversity is crucial to identify geographical hotspots of emerging disease, and guide public health and conservation efforts. In principle, assuming a bottom-up coupling between the diversity of resources and consumers, the geographical distribution of parasite diversity should match that of host diversity. We test the expected spatial congruence between host and parasite diversity for helminth parasites of vertebrate hosts, across grid cells of a global map. Using high-resolution databases on host species distributions and newly compiled data on the geographical distribution of parasite species discovery, we found positive covariation between host species richness and the number of parasite species discovered, for all vertebrate groups, regardless of the analytical method used, spatial autocorrelation, and spatial resolution. However, all associations were very weak, indicating a poor match between host species richness and parasite species discovery. The research deficit in parasite discovery peaks in areas corresponding to hotspots of host diversity, where disproportionately fewer new parasites are discovered than expected based on local host richness. This spatially biased research effort prevents a full inventory of parasite biodiversity, and impedes predictions of where new diseases may emerge. The host taxon-specific maps we produced, however, can guide future efforts to uncover parasite biodiversity.
Parasite taxonomy traditionally relies on morphometric and life-cycle characteristics which may not reflect complex phylogenetic relationships. However, genetic analyses can reveal cryptic species within morphologically described parasite taxa. We analysed the phylogenetic variation within the nematode Spauligodon atlanticus Astasio-Arbiza, Zapatero-Ramos, Ojeda-Rosas & Solera-Puertas, 1987, a parasite of the Canarian lizard genus Gallotia Boulenger, inferring the origin of their current association. We also attempted to determine its relationship with other Spauligodon spp. Three different markers, mitochondrial COI plus nuclear 18S and 28S ribosomal RNA, were used to estimate the evolutionary relationships between these nematodes. S. atlanticus was found to be paraphyletic, suggesting that Gallotia spp. were colonised by two independent lineages of Spauligodon. Additional analyses of other Spauligodon spp. are required for a more complete interpretation of the evolution of this genus from the Canarian archipelago and its closest taxa. Our results emphasise the importance of extensive sampling and phylogenetic studies at the intrageneric level, and highlight the limitations of a morphologically based taxonomy in these parasites.
Twenty‐five years ago, it was suggested that current‐day New Zealand, part of the largely sunken continent of Zealandia, could have been completely inundated during the Oligocene marine transgression (OMT) some 25–23 million years ago. Such an event would, of necessity, imply that all terrestrial, freshwater, and maybe coastal marine species must have dispersed there since. This idea has generated heated debate, on which geological, palaeontological and molecular data are being brought to bear. Here, we review the phylogeographic literature in the form of molecular estimates of divergence times between New Zealand lineages and their closest overseas sister groups. Using an event‐based approach, we show that these divergence times follow approximately a smooth exponential over the last 50 Ma or more. Approximately 74 of these 248 lineages appear to have survived the OMT in situ; some of these major lineages comprise multiple additional lineages as a result of autochthonous speciation prior to the OMT. Non‐volant terrestrial animals, freshwater animals and trees are particularly well represented in surviving lineages, whereas marine animals, herbs and shrubs tend to show more recent arrival times. There is no evidence for a deficit of pre‐Oligocene lineages, nor an excess of ones arriving just afterwards. The pattern is one of geometric increase in new lineages with more recent time, reflecting a balance between immigration and extinction. Consequently, this large body of molecular data provides no evidence for complete inundation of New Zealand during the Oligocene. In conjunction with new geological and palaeontological findings, these data suggest that it is time to put the idea to rest.
BackgroundHost-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events.MethodsA total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences.ResultsInfection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges. Host-sharing of the same haemogregarine haplotype was only detected twice, but these rare instances likely represent occasional cross-infections.ConclusionsOur results suggest that: (i) Canarian haemogregarine haplotypes are highly host-specific, which might have restricted parasite host expansion; (ii) haemogregarines most probably reached the Canary Islands in three colonization events with each host genus; and (iii) the high number of parasite haplotypes infecting Gallotia hosts and their restricted geographical distribution suggest co-diversification. These findings contrast with our expectations derived from results on other insular parasites, highlighting how host specificity depends on parasite characteristics and evolutionary history.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2760-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.