Abstract. Tourism crowdsourcing platforms have a profound influence on the tourist behaviour particularly in terms of travel planning. Not only they hold the opinions shared by other tourists concerning tourism resources, but, with the help of recommendation engines, are the pillar of personalised resource recommendation. However, since prospective tourists are unaware of the trustworthiness or reputation of crowd publishers, they are in fact taking a leap of faith when then rely on the crowd wisdom. In this paper, we argue that modelling publisher Trust & Reputation improves the quality of the tourism recommendations supported by crowdsourced information. Therefore, we present a tourism recommendation system which integrates: (i) user profiling using the multi-criteria ratings; (ii) k -Nearest Neighbours (k -NN) prediction of the user ratings; (iii) Trust & Reputation modelling; and (iv ) incremental model update, i.e., providing near real-time recommendations. In terms of contributions, this paper provides two different Trust & Reputation approaches: (i) general reputation employing the pairwise trust values using all users; and (ii) neighbour-based reputation employing the pairwise trust values of the common neighbours. The proposed method was experimented using crowdsourced datasets from Expedia and TripAdvisor platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.