The significant growth in the use of the Internet and the rapid development of network technologies are associated with an increased risk of network attacks. Network attacks refer to all types of unauthorized access to a network including any attempts to damage and disrupt the network, often leading to serious consequences. Network attack detection is an active area of research in the community of cybersecurity. In the literature, there are various descriptions of network attack detection systems involving various intelligent-based techniques including machine learning (ML) and deep learning (DL) models. However, although such techniques have proved useful within specific domains, no technique has proved useful in mitigating all kinds of network attacks. This is because some intelligent-based approaches lack essential capabilities that render them reliable systems that are able to confront different types of network attacks. This was the main motivation behind this research, which evaluates contemporary intelligent-based research directions to address the gap that still exists in the field. The main components of any intelligent-based system are the training datasets, the algorithms, and the evaluation metrics; these were the main benchmark criteria used to assess the intelligent-based systems included in this research article. This research provides a rich source of references for scholars seeking to determine their scope of research in this field. Furthermore, although the paper does present a set of suggestions about future inductive directions, it leaves the reader free to derive additional insights about how to develop intelligent-based systems to counter current and future network attacks.
With the expansion of the internet, a major threat has emerged involving the spread of malicious domains intended by attackers to perform illegal activities aiming to target governments, violating privacy of organizations, and even manipulating everyday users. Therefore, detecting these harmful domains is necessary to combat the growing network attacks. Machine Learning (ML) models have shown significant outcomes towards the detection of malicious domains. However, the “black box” nature of the complex ML models obstructs their wide-ranging acceptance in some of the fields. The emergence of Explainable Artificial Intelligence (XAI) has successfully incorporated the interpretability and explicability in the complex models. Furthermore, the post hoc XAI model has enabled the interpretability without affecting the performance of the models. This study aimed to propose an Explainable Artificial Intelligence (XAI) model to detect malicious domains on a recent dataset containing 45,000 samples of malicious and non-malicious domains. In the current study, initially several interpretable ML models, such as Decision Tree (DT) and Naïve Bayes (NB), and black box ensemble models, such as Random Forest (RF), Extreme Gradient Boosting (XGB), AdaBoost (AB), and Cat Boost (CB) algorithms, were implemented and found that XGB outperformed the other classifiers. Furthermore, the post hoc XAI global surrogate model (Shapley additive explanations) and local surrogate LIME were used to generate the explanation of the XGB prediction. Two sets of experiments were performed; initially the model was executed using a preprocessed dataset and later with selected features using the Sequential Forward Feature selection algorithm. The results demonstrate that ML algorithms were able to distinguish benign and malicious domains with overall accuracy ranging from 0.8479 to 0.9856. The ensemble classifier XGB achieved the highest result, with an AUC and accuracy of 0.9991 and 0.9856, respectively, before the feature selection algorithm, while there was an AUC of 0.999 and accuracy of 0.9818 after the feature selection algorithm. The proposed model outperformed the benchmark study.
A fetal ultrasound (US) is a technique to examine a baby’s maturity and development. US examinations have varying purposes throughout pregnancy. Consequently, in the second and third trimester, US tests are performed for the assessment of Amniotic Fluid Volume (AFV), a key indicator of fetal health. Disorders resulting from abnormal AFV levels, commonly referred to as oligohydramnios or polyhydramnios, may pose a serious threat to a mother’s or child’s health. This paper attempts to accumulate and compare the most recent advancements in Artificial Intelligence (AI)-based techniques for the diagnosis and classification of AFV levels. Additionally, we provide a thorough and highly inclusive breakdown of other relevant factors that may cause abnormal AFV levels, including, but not limited to, abnormalities in the placenta, kidneys, or central nervous system, as well as other contributors, such as preterm birth or twin-to-twin transfusion syndrome. Furthermore, we bring forth a concise overview of all the Machine Learning (ML) and Deep Learning (DL) techniques, along with the datasets supplied by various researchers. This study also provides a brief rundown of the challenges and opportunities encountered in this field, along with prospective research directions and promising angles to further explore.
Amniotic Fluid (AF) refers to a protective liquid surrounding the fetus inside the amniotic sac, serving multiple purposes, and hence is a key indicator of fetal health. Determining the AF levels at an early stage helps to ascertain the maturation of lungs and gastrointestinal development, etc. Low AF entails the risk of premature birth, perinatal mortality, and thereby admission to intensive care unit (ICU). Moreover, AF level is also a critical factor in determining early deliveries. Hence, AF detection is a vital measurement required during early ultrasound (US), and its automation is essential. The detection of AF is usually a time-consuming process as it is patient specific. Furthermore, its measurement and accuracy are prone to errors as it heavily depends on the sonographer’s experience. However, automating this process by developing robust, precise, and effective methods for detection will be beneficial to the healthcare community. Therefore, in this paper, we utilized transfer learning models in order to classify the AF levels as normal or abnormal using the US images. The dataset used consisted of 166 US images of pregnant women, and initially the dataset was preprocessed before training the model. Five transfer learning models, namely, Xception, Densenet, InceptionResNet, MobileNet, and ResNet, were applied. The results showed that MobileNet achieved an overall accuracy of 0.94. Overall, the proposed study produces an effective result in successfully classifying the AF levels, thereby building automated, effective models reliant on transfer learning in order to aid sonographers in evaluating fetal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.