Purpose
: The aim of this study was to evaluate the influence of the geometric shape on the dissolution rate of the domperidone, a drug model for immediate release dosage form. In this regard, a lack of sufficient information about the effective dissolution rate of the drugs regarding their shapes has made this issue an interesting subject for researchers. Methods: For this purpose, three tablet shapes, namely flat and biconvex both in a round and oblong shapes, with different four sizes were modelled for the preparation of domperidone tablet. In vitro dissolution test was accomplished using a USP dissolution apparatus II. The drug dissolution rate was assessed by calculating various dissolution parameters; e.g., dissolution efficiency (DE), mean dissolution rate (MDR), mean dissolution time (MDT), and difference and similarity factors (f1 and f2 ). Results: Regarding the disintegration time, the larger tablets showed a faster disintegration time. When the size of the tablets was smaller, the amount of released drug was significantly decreased. In addition, #9 tablets with a flat or biconvex geometry had obvious effects on the DE values. Generally, biconvex tablets had higher DE percentage than the flat tablets. Conclusion: Noticeable differences in dissolution parameters by considering the different geometric shapes play an important role in the drug release kinetics which makes a significant effect on quick onset of action in oral administration.
Introduction: Glatiramer acetate (GA) is a newly emerged therapeutic peptide to reduce the frequency of relapses in multiple sclerosis (MS). Despite its good performance in controlling MS, it is not widely used due to daily or biweekly subcutaneous injections due to rapid degradation and body clearance. Therefore, implant design with sustained release leads to prolonged biological effects by gradually increasing drug exposure and protecting GA from rapid local degradation. Methods: Different emulsion methods, PLGA type, surfactant concentration, drug/polymer ratio, drying processes, stirring method, and other variables in preliminary studies modified the final formulation. The release kinetics were studied through mechanistic kinetic models such as zero-order, Weibull, Higuchi, etc. In this study, all challenges for easy scale-up, methodological detail, and a simple, feasible setup in mass production were discussed. Results: The optimized formulation was obtained by 1:6 drug/PLGA, 0.5% w/w polyvinyl alcohol, and 0.75% w/w NaCl in the external aqueous phase, 1:10 continuous phase to dispersed phase ratio, and without any surfactant in the primary emulsion. The final freeze-dried particles presented a narrow distributed size of 1-10 µm with 7.29% ± 0.51 drug loading and zero-order release behavior with appropriate regression correlation (R2 98.7), complete release, and only 7.1% initial burst release. Conclusion: Therefore, to achieve improvement in patient compliance through better and longer efficacy, designing the parenteral sustained release microspheres (MPSs) of this immune modulator is a promising approach that should be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.