Massive industrial and agricultural developments have led to adverse effects of environmental pollution resisting conventional treatment processes. The issue can be addressed via heterogeneous photocatalysis as witnessed recently. Herein, we have developed novel metal/semi-conductor/polymer nanocomposite for the catalyzed degradation and mineralization of model organic dye pollutants in darkness. RuO2-TiO2 mixed oxide nanoparticles (NPs) were modified with diphenyl amino (DPA) groups from the 4-diphenylamine diazonium salt precursor. The latter was reduced with ascorbic acid to provide radicals that modified the NPs and further served for in situ synthesis of polyaniline (PANI) that resulted in RuO2/TiO2-DPA-PANI nanocomposite catalyst. Excellent adhesion of PANI to RuO2/TiO2-DPA was noted but not in the case of the bare mixed oxide. This stresses the central role of diazonium compounds to tether PANI to the underlying mixed oxide. RuO2-TiO2/DPA/PANI nanocomposite revealed superior catalytic properties in the degradation of Methyl Orange (MO) compared to RuO2-TiO2/PANI and RuO2-TiO2. Interestingly, it is active even in the darkness due to high PANI mass loading. In addition, PANI constitutes a protective layer of RuO2-TiO2 NPs that permitted us to reuse the RuO2-TiO2/DPA/PANI nanocomposite nine times, whereas RuO2-TiO2/PANI and RuO2-TiO2 were reused seven and five times only, respectively. The electronic displacements at the interface of the heterojunction metal/semi-conductor under visible light and the synergistic effects between PANI and RuO2 result in the separation of electron-hole pairs and a reduction of its recombination rate as well as a significant catalytic activity of RuO2-TiO2/DPA/PANI under simulated sunlight and in the dark, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.