PurposeThe feasibility of magnetic resonance image (MRI)‐based proton therapy is based, among several other factors, on the implementation of appropriate extensions on current dose calculation methods. This work aims to develop a pencil beam algorithm (PBA) for dose calculation of proton beams within magnetic field regions of up to 3 T.MethodsMonte Carlo (MC) simulations using the GATE 7.1/GEANT4.9.4p02 toolkit were performed to generate calibration and benchmarking data for the PBA. Dose distributions from proton beams in the clinical required energy range 60–250 MeV impinging on a 400 × 400 × 400 mm3 water phantom and transverse magnetic fields ranging from 0 to 3 T were considered. Energy depositions in homogeneous and heterogeneous phantoms filled with water, adipose, bone, and air were evaluated for proton energies of 80, 150, and 240 MeV, combining a trajectory calculation method and look‐up tables (LUT). A novel parametrization model, using independent tailed Gauss fitting functions, was employed to describe the nonsymmetric shape of lateral beam profiles. Integrated depth‐dose curves (IDD), lateral dose profiles, and two‐dimensional dose distributions calculated with the PBA were compared with results from MC simulations to assess the performance of the algorithm. A gamma index criterion of 2%/2 mm was used for analysis.ResultsA close to perfect agreement was observed for PB‐based dose calculations in water in magnetic fields of 0.5, 1.5, and 3 T. IDD functions showed differences between the PBA and MC of less than 0.1% before the Bragg peak, and deviations of 2–8% in the distal energy falloff region. Gamma index pass rates higher than 99% and mean values lower than 0.1 were encountered for all analyzed configurations. For homogeneous phantoms, only the full bone configuration offered deviations in the Bragg peak position of up to 1.7% and overestimations of the lateral beam spot width for high‐energy protons and magnetic field intensities. An excellent agreement between PBA and MC dose calculation was also achieved using slab‐like and lateral heterogeneous phantoms, with gamma index passing rates above 98% and mean values between 0.1 and 0.2. As expected, agreement reduced for high‐energy protons and high‐intensity magnetic fields, although results remained good enough to be considered for future implementation in clinical practice.ConclusionsThe proposed pencil beam algorithm for protons can accurately account for dose distortion effects induced by external magnetic fields. The application of an analytical model for dose estimation and corrections reduces the calculation times considerably, making the presented PBA a suitable candidate for integration in a treatment planning system.
Purpose: To investigate the response of detectors for proton dosimetry in the presence of magnetic fields. Material&Methods: Four ionization chambers, two thimble-type and two plane-parallel-type, and a diamond detector were investigated. All detectors were irradiated with homogeneous single-energy-layer fields, using 252.7 MeV proton beams. A Farmer ionization chamber was additionally irradiated in the same geometrical configuration, but with a lower nominal energy of 97.4 MeV. The beams were subjected to magnetic field strengths of 0, 0.25, 0.5, 0.75 and 1 T produced by a research dipole magnet placed at the room's isocenter. Detectors were positioned at 2 cm water-equivalent depth, with their stem perpendicular to both the magnetic field lines and the proton beam's central axis, in the direction of the Lorentz force. Normality and two sample statistical Student's t-tests were performed to assess the influence of the magnetic field on the detectors' responses. Results: For all detectors, a small but significant magnetic-field-dependent change of their response was found. Observed differences compared to the no magnetic field case ranged from +0.5% to-0.7%. The magnetic field dependence was found to be non-linear and highest between 0.25 and 0.5 T for 252.7 MeV proton beams. A different variation of the Farmer chamber response with magnetic field strength was observed for irradiations using lower energy (97.4 MeV) protons. The largest magnetic field effects were observed for plane-parallel ionization chambers. Conclusion: Small magnetic-field-dependent changes in the detector response were identified, which should be corrected for dosimetric applications.
Purpose: Magnetic resonance guidance in proton therapy (MRPT) is expected to improve its current performance. The combination of magnetic fields with clinical proton beam lines poses several challenges for dosimetry, treatment planning and dose delivery. Proton beams are deflected by magnetic fields causing considerable changes in beam trajectories and also a retraction of the Bragg peak positions. A proper prediction and compensation of these effects is essential to ensure accurate dose calculations. This work aims to develop and benchmark a Monte Carlo (MC) beam model for dose calculation of MRPT for static magnetic fields up to 1 T. Methods: Proton beam interactions with magnetic fields were simulated using the GATE/Geant4 toolkit. The transport of charged particle in custom 3D magnetic field maps was implemented for the first time in GATE. Validation experiments were done using a horizontal proton pencil beam scanning system with energies between 62.4 and 252.7 MeV and a large gap dipole magnet (B = 0-1 T), positioned at the isocenter and creating magnetic fields transverse to the beam direction. Dose was measured with Gafchromic EBT3 films within a homogeneous PMMA phantom without and with bone and tissue equivalent material slab inserts. Linear energy transfer (LET) quenching of EBT3 films was corrected using a linear model on dose-averaged LET method to ensure a realistic dosimetric comparison between simulations and experiments. Planar dose distributions were measured with the films in two different configurations: parallel and transverse to the beam direction using single energy fields and spread-out Bragg peaks. The MC model was benchmarked against lateral deflections and spot sizes in air of single beams measured with a Lynx PT detector, as well as dose distributions using EBT3 films. Experimental and calculated dose distributions were compared to test the accuracy of the model. Results: Measured proton beam deflections in air at distances of 465, 665, and 1155 mm behind the isocenter after passing the magnetic field region agreed with MC-predicted values within 4 mm. Differences between calculated and measured beam full width at half maximum (FWHM) were lower than 2 mm. For the homogeneous phantom, measured and simulated in-depth dose profiles showed range and average dose differences below 0.2 mm and 1.2%, respectively. Simulated central beam positions and widths differed <1 mm to the measurements with films. For both heterogenous phantoms, differences within 1 mm between measured and simulated central beam positions and widths were obtained, confirming a good agreement of the MC model. Conclusions: A GATE/Geant4 beam model for protons interacting with magnetic fields up to 1 T was developed and benchmarked to experimental data. For the first time, the GATE/Geant4 model was successfully validated not only for single energy beams, but for SOBP, in homogeneous and heterogeneous phantoms. EBT3 film dosimetry demonstrated to be a powerful dosimetric tool, once the film response function is LET corrected,...
Purpose: Radiochromic film dosimetry is extensively used for quality assurance in photon and proton beam therapy. So far, GafchromicTM EBT3 film appears as a strong candidate to be used in future magnetic resonance (MR) based therapy systems. The response of Gafchromic EBT3 films in the presence of magnetic fields has already been addressed for different MR-linacs systems. However, a detailed evaluation of the influence of external magnetic fields on the film response and calibration curves for proton therapy has not yet been reported. This study aims to determine the dose responses of EBT3 films for clinical proton beams exposed to magnetic field strengths up to 1 T in order to investigate the feasibility of EBT3 film as an accurate dosimetric tool for a future MR particle therapy system (MRPT). Methods: The dosimetric characteristics of EBT3 films were studied for a proton beam passing through magnetic field strengths of B = 0, 0.5, and 1 T. Absorbed dose calibration and measurements were performed using clinical proton beams in the nominal energy range of 62.4-252.6 MeV. Irradiations were done using an in-house developed PMMA slab phantom placed in the center of a dipole research magnet. Monte Carlo (MC) simulations using the GATE/Geant4 toolkit were performed to predict the effect of magnetic fields on the energy deposited by proton beams in the phantom. Planned and measured doses from 3D box cube irradiations were compared to assess the accuracy of the dosimetric method using EBT3 films with/without the external magnetic field. Results: Neither for the mean pixel value nor for the net optical density, any significant deviations were observed due to the presence of an external magnetic field (B ≤ 1T) for doses up to 10 Gy. Doseresponse curves for the red channel were fitted by a three-parameter function for the field-free case and for B = 1T, showing for both cases an R-square coefficient of unity and almost identical fitting parameters. Independently of the magnetic field, EBT3 films showed an under-response as high as 8% in the Bragg peak region, similarly to previously reported effects for particle therapy. No noticeable influence of the magnetic field strength was observed on the quenching effect of the EBT3 films. Conclusions: For the first time detailed absorbed dose calibrations of EBT3 films for proton beams in magnetic field regions were performed. Results showed that EBT3 films represent an attractive solution for the dosimetry of a future MRPT system. As film response functions for protons are not affected by the magnetic field strenght, they can be used for further investigations to evaluate the dosimetric effects induced due to particle beams bending in magnetic fields regions.
Magnetic resonance guidance in particle therapy has the potential to improve the current performance of clinical workflows. However, the presence of magnetic fields challenges the current algorithms for treatment planning. To ensure proper dose calculations, compensation methods are required to guarantee that the maximum deposited energy of deflected beams lies in the target volume. In addition, proper modifications of the intrinsic dose calculation engines, accounting for magnetic fields, are needed. In this work, an algorithm for proton treatment planning in magnetic fields was implemented in a research treatment planning system (TPS), matRad. Setup-specific look up tables were generated using a validated MC model for a clinical proton beamline (62.4 -215.7 MeV) interacting with a dipole magnet (B = 0-1 T). The algorithm was successfully benchmarked against MC simulations in water, showing gamma index (2%/2mm) global pass rates higher than 96% for different plan configurations. Additionally, absorbed depth doses were compared with experimental measurements in water. Differences within 2% and 3.5% in the Bragg peak and entrance regions, respectively, were found. Finally, treatment plans were generated and optimized for magnetic field strengths of 0 and 1 T to assess the performance of the proposed model. Equivalent treatment plans and dose volume histograms were achieved, independently of the magnetic field strength. Differences lower than 1.5% for plan quality indicators (D 2% , D 50% , D 90% , V 95% and V 105% ) in water, a TG119 phantom and an exemplary prostate patient case were obtained. More complex treatment planning studies are foreseen to establish the limits of applicability of the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.