Our results showed that combination of chemotherapy drugs of silibinin and paclitaxel can be more efficient in treatment of ovarian cancer cells.
Purpose: Ginger is a natural compound with anti-cancer properties. The effects of ginger and its mechanism on ovarian cancer and its cell line model, SKOV-3, are unclear. In this study, we have evaluated the effect of ginger extract on SKOV-3. Methods: SKOV-3 cells were incubated with ginger extract for 24, 48 and 72 hours. Cell toxicity assay was performed. Different data mining algorithms were applied to highlight the most important features contributing to ginger inhibition on the SKOV-3 cell proliferation. Moreover, Real-Time PCR was performed to assay p53, p21 and bcl-2 genes expression. For co-expression meta-analysis of p53, mutual ranking (MR) index and transformation to Z-values (Z distribution) were applied on available transcriptome data in NCBI GEO data repository. Results: The ginger extract significantly inhibited cancer growth in ovarian cancer cell line. The most important attribute was 60 µg/ml concentration which received weights higher than 0.50, 0.75 and 0.95 by 90%, 80% and 50% of feature selection models, respectively. The expression level of p53 was increased sharply in response to ginger treatment. Systems biology analysis and meta-analysis of deposited expression value in NCBI based on rank of correlation and Z-transformation approach unraveled the key co-expressed genes and co-expressed network of P53, as the key transcription factor induced by ginger extract. High co-expression between P53 and the other apoptosis-inducing proteins such as CASP2 and DEDD was noticeable, suggesting the molecular mechanism underpinning of ginger action. Conclusion: We found that the ginger extract has anticancer properties through p53 pathway to induce apoptosis.
Human stem cells and progenitor cells can be used to treat cancer and replace dysfunctional cells within a tissue or organ. The objective of this study was to identify the appropriate cells type in regenerative medicine and targeted therapy. As an alternative to embryonic and bone marrow stem cells, we examined human amniotic fluid stem cells (hAFSCs), one of the potential source of multipotent stem cells isolated from both cell pellet (using single-stage method), and supernatant of human amniotic fluid. Source of isolation and unique property of the cells emphasize that these cells are one of the promising new tools in therapeutic field. Double sources for isolation and availability of the left over samples in diagnostic laboratory at the same time have less legal and ethical concerns compared with embryonic stem cell studies. Cells were isolated, cultured for 18th passage for 6 months and characterized using qPCR and flow cytometry. Cells showed good proliferative ability in culture condition. The cells successfully differentiated into the adipogenic and osteogenic lineages. Based on these findings, amniotic fluid can be considered as an appropriate and convenient source of human amniotic fluid stem cells. These cells provide potential tools for therapeutic applications in the field of regenerative medicine. To get a better understanding of crosstalk between Oct4/NANOG with osteogenesis and adipogenesis, we used network analysis based on Common Targets algorithm and Common Regulators algorithm as well as subnetwork discovery based on gene set enrichment. Network analysis highlighted the possible role of MIR 302A and MIR let-7g. We demonstrated the high expression of MIR 302A and low expression of MIR let7g in hAFSCs by qPCR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.