Obesity shares with most chronic diseases the presence of an inflammatory component, which accounts for the development of metabolic disease and other associated health alterations. This inflammatory state is reflected in increased circulating levels of pro-inflammatory proteins, and it occurs not only in adults but also in adolescents and children. The chronic inflammatory response has its origin in the links existing between the adipose tissue and the immune system. Obesity, like other states of malnutrition, is known to impair the immune function, altering leucocyte counts as well as cell-mediated immune responses. In addition, evidence has arisen that an altered immune function contributes to the pathogenesis of obesity. This review attempts to briefly comment on the various plausible explanations that have been proposed for the phenomenon: (1) the obesity-associated increase in the production of leptin (pro-inflammatory) and the reduction in adiponectin (anti-inflammatory) seem to affect the activation of immune cells; (2) NEFA can induce inflammation through various mechanisms (such as modulation of adipokine production or activation of Toll-like receptors); (3) nutrient excess and adipocyte expansion trigger endoplasmic reticulum stress; and (4) hypoxia occurring in hypertrophied adipose tissue stimulates the expression of inflammatory genes and activates immune cells. Interestingly, data suggest a greater impact of visceral adipose tissue and central obesity, rather than total body fat, on the inflammatory process. In summary, there is a positive feedback loop between local inflammation in adipose tissue and altered immune response in obesity, both contributing to the development of related metabolic complications.
The COVID-19 pandemic is an extraordinary global emergency that has led to the implementation of unprecedented measures in order to stem the spread of the infection. Internationally, governments are enforcing measures such as travel bans, quarantine, isolation, and social distancing leading to an extended period of time at home. This has resulted in reductions in physical activity and changes in dietary intakes that have the potential to accelerate sarcopenia, a deterioration of muscle mass and function (more likely in older populations), as well as increases in body fat. These changes in body composition are associated with a number of chronic, lifestyle diseases including cardiovascular disease (CVD), diabetes, osteoporosis, frailty, cognitive decline, and depression. Furthermore, CVD, diabetes, and elevated body fat are associated with greater risk of COVID-19 infection and more severe symptomology, underscoring the importance of avoiding the development of such morbidities. Here we review mechanisms of sarcopenia and their relation to the current data on the effects of COVID-19 confinement on physical activity, dietary habits, sleep, and stress as well as extended bed rest due to COVID-19 hospitalization. The potential of these factors to lead to an increased likelihood of muscle loss and chronic disease will be discussed. By offering a number of home-based strategies including resistance exercise, higher protein intakes and supplementation, we can potentially guide public health authorities to avoid a lifestyle disease and rehabilitation crisis post-COVID-19. Such strategies may also serve as useful preventative measures for reducing the likelihood of sarcopenia in general and in the event of future periods of isolation.
Expansion of adipose tissue mass, the distinctive feature of obesity, is associated with low-grade inflammation. White adipose tissue secretes a diverse range of adipokines, a number of which are inflammatory mediators (such as TNFa, IL-1b, IL-6, monocyte chemoattractant protein 1). The production of inflammatory adipokines is increased with obesity and these adipokines have been implicated in the development of insulin resistance and the metabolic syndrome. However, the basis for the link between increased adiposity and inflammation is unclear. It has been proposed previously that hypoxia may occur in areas within adipose tissue in obesity as a result of adipocyte hypertrophy compromising effective O 2 supply from the vasculature, thereby instigating an inflammatory response through recruitment of the transcription factor, hypoxic inducible factor-1. Studies in animal models (mutant mice, diet-induced obesity) and cell-culture systems (mouse and human adipocytes) have provided strong support for a role for hypoxia in modulating the production of several inflammationrelated adipokines, including increased IL-6, leptin and macrophage migratory inhibition factor production together with reduced adiponectin synthesis. Increased glucose transport into adipocytes is also observed with low O 2 tension, largely as a result of the up-regulation of GLUT-1 expression, indicating changes in cellular glucose metabolism. Hypoxia also induces inflammatory responses in macrophages and inhibits the differentiation of preadipocytes (while inducing the expression of leptin). Collectively, there is strong evidence to suggest that cellular hypoxia may be a key factor in adipocyte physiology and the underlying cause of adipose tissue dysfunction contributing to the adverse metabolic milieu associated with obesity.
Hypoxia modulates white adipose tissue function, and this includes stimulating glucose uptake and the expression of facilitative glucose transporters (particularly GLUT1) in adipocytes. This study has examined the effect of hypoxia on lactate release from adipocytes and whether the monocarboxylate transporters that mediate lactate transport (MCTs1-4) are expressed in human adipocytes and are induced by low O(2) tension. Exposure of human Simpson-Golabi-Behmel syndrome adipocytes to 1% O(2) for 24 h resulted in increased lactate release (2.3-fold) compared with cells in normoxia (21% O(2)). Screening by reverse transcription polymerase chain reaction indicated that the genes encoding MCT1, MCT2, and MCT4 are expressed in human adipose tissue, and in adipocytes and preadipocytes in culture. Hypoxia (48 h) increased MCT1 (8.5-fold) and MCT4 (14.3-fold) messenger RNA (mRNA) levels in human adipocytes, but decreased MCT2 mRNA (fourfold). MCT1 protein level was also increased (2.7-fold at 48 h) by hypoxia, but there was no change in MCT4 protein. The changes in MCT gene expression induced by hypoxia were reversed on return to normoxia. Treatment with the hypoxia mimetic CoCl(2) resulted in up-regulation of MCT1 (up to twofold) and MCT4 (fivefold) mRNA level, but there was no significant effect on MCT2 expression. It is concluded that hypoxia increases lactate release from adipocytes and modulates MCT expression in a type-specific manner, with MCT1 and MCT4 expression being hypoxia-inducible transcription factor-1 (HIF-1) dependent. Increased lactate production and monocarboxylate transporter expression are likely to be key components of the adaptive response of adipocytes to low O(2) tension as adipose tissue mass expands in obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.