Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via b 2 -adrenoceptor (b2-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, a 2A -AR and a 2C -AR (a 2A /a 2C -ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In a 2A /a 2C -ARKO versus wild-type (WT) mice, micro-computed tomographic (mCT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kB (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial b 2 -AR mRNA expression also was similar in KO and WT littermates, whereas a 2A -, a 2B -and a 2C -AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected a 2A -, a 2B -, a 2C -and b 2 -ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective a 2 -AR agonist clonidine and to the nonspecific a-AR antagonist phentolamine. These findings suggest that b 2 -AR is not the single adrenoceptor involved in bone turnover regulation and show that a 2 -AR signaling also may mediate the SNS actions in the skeleton. ß
It is well known that thyroid hormone affects body composition; however, the effect of the thyroid hormone receptor b (TRb)-selective thyromimetic GC-1 on this biological feature had not been demonstrated. In the current study, we compared the effects of a 6-week treatment with triiodothyronine (T3; daily injections of 3 or 6 mg/100 g body weight) or GC-1 (equimolar doses) on different metabolic parameters in adult female rats. Whereas all animals gained weight (17-25 g) in a way not basically affected by T3 or GC-1 treatment, only T3 treatment selectively increased food intake (50-70%). Oxygen consumption was significantly and equally increased (50-70%) by T3 and GC-1. Analysis of body composition by dual-energy X-ray absorptiometry (DEXA) revealed that, whereas control animals gained about 80% of fat mass, T3-or GC-1-treated animals lost 70-90 and w20% respectively. Direct analysis of the carcass showed that T3 treatment promoted a 14-74% decrease in fat content but GC-1 treatment promoted only a 15-23% reduction. The gain in lean mass by DEXA and the carcass protein content were not affected by T3 or GC-1 treatment. However, the mass of individual skeletal muscles was negatively affected by T3 but only barely by GC-1. These findings highlight the potential use of GC-1 for the treatment of obesity and the metabolic syndrome.
We investigated the effects of GC-1, a TR-selective thyromimetic, on bone development of hypothyroid rats. Whereas T3 reverted the IGF-I deficiency and the skeletal defects caused by hypothyroidism, GC-1 had no effect on serum IGF-I or on IGF-I protein expression in the epiphyseal growth plate of the femur, but induced selective effects on bone development. Our findings indicate that T3 exerts some essential effects on bone development that are mediated by TR1. Introduction:We investigated the role of the thyroid hormone receptor 1 (TR1) on skeletal development of rats using the TR-selective agonist GC-1. Materials and Methods: Twenty-one-day-old female rats (n ס 6/group) were rendered hypothyroid (Hypo) and treated for 5 weeks with 0.3 ug/100 g BW/day of T3 (1xT3), 5xT3, or equimolar doses of GC-1 (1xGC-1 and 5xGC-1). Serum triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), and insulinlike growth factor (IGF)-I concentrations were determined by radioimmunoassay (RIA). BMD and longitudinal bone growth were determined by DXA. Trabecular bone histomorphometry and epiphyseal growth plate (EGP) morphometry were performed in the distal femur. Expressions of IGF-I protein and of collagen II and X mRNA were evaluated by immunohistochemistry and in situ hybridization, respectively. To determine hormonal effects on ossification, skeletal preparations of hypothyroid-, 5xGC-1-, and 5xT3-treated neonatal rats were compared. Results: Hypothyroidism impaired longitudinal body growth and BMD gain, delayed ossification, reduced the number of hypertrophic chondrocytes (HCs; 72% versus Euthyroid [Eut] rats; p < 0.001), and resulted in disorganized columns of EGP chondrocytes. Serum IGF-I was 67% reduced versus Eut rats (p < 0.001), and the expression of IGF-I protein and collagen II and X mRNA were undetectable in the EGP of Hypo rats. T3 completely or partially normalized all these parameters. In contrast, GC-1 did not influence serum concentrations or EGP expression of IGF-I, failed to reverse the disorganization of proliferating chondrocyte columns, and barely affected longitudinal growth. Nevertheless, GC-1 induced ossification, HC differentiation, and collagen II and X mRNA expression and increased EGP thickness to Eut values. GC-1-treated rats had higher BMD gain in the total tibia, total femur, and in the femoral diaphysis than Hypo animals (p < 0.05). These changes were associated with increased trabecular volume (48%, p < 0.01), mineralization apposition rate (2.3-fold, p < 0.05), mineralizing surface (4.3-fold, p < 0.01), and bone formation rate (10-fold, p < 0.01). Conclusions: Treatment of hypothyroid rats with the TR-specific agonist GC-1 partially reverts the skeletal development and maturation defects resultant of hypothyroidism. This finding suggests that TR1 has an important role in bone development.
Several drug delivery systems have been proposed to overcome physiological barriers, improving ocular bioavailability. Systemic routes are seldom used due to the blood-ocular barrier. Novel drug delivery systems based on nanotechnology techniques have been developed to overcome ocular physiological barriers. This non-systematic review suggests the utilization of a transitory blood-ocular breakdown to allow the access of drugs by nanotechnology drug delivery systems via the systemic route. We discuss the possible ways to cause the breakdown of the blood-ocular barrier: acute inflammation caused by intraocular surgery, induced ocular hypotony, and the use of inflammatory mediators. The suitability of use of the systemic route and its toxic effects are also discussed in this article.
Thyrotoxicosis is frequently associated with increased bone turnover and decreased bone mass. To investigate the role of thyroid hormone receptor-beta (TR beta) in mediating the osteopenic effects of triiodothyronine (T3), female adult rats were treated daily (64 days) with GC-1 (1.5 microg/100 g body wt), a TR beta-selective thyromimetic compound. Bone mass was studied by dual-energy X-ray absorptiometry of several skeletal sites and histomorphometry of distal femur, and the results were compared with T3-treated (3 microg/100 g body wt) or control animals. As expected, treatment with T3 significantly reduced bone mineral density (BMD) in the lumbar vertebrae (L2-L5), femur, and tibia by 10-15%. In contrast, GC-1 treatment did not affect the BMD in any of the skeletal sites studied. The efficacy of GC-1 treatment was verified by a reduction in serum TSH (-52% vs. control, P < 0.05) and cholesterol (-21% vs. control, P < 0.05). The histomorphometric analysis of the distal femur indicated that T3 but not GC-1 treatment reduced the trabecular volume, thickness, and number. We conclude that chronic, selective activation of the TR beta isoform does not result in bone loss typical of T3-induced thyrotoxicosis, suggesting that the TR beta isoform is not critical in this process. In addition, our findings suggest that the development of TR-selective T3 analogs that spare bone mass represents a significant improvement toward long-term TSH-suppressive therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.