AbstractOne of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN). World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP) employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.
Skin cancer is a type of disease in which malignant cells are formed in skin tissues. However, skin cancer is a dangerous disease, and an early detection of this disease helps the therapists to cure this disease. In the present research, an automatic computer-aided method is presented for the early diagnosis of skin cancer. After image noise reduction based on median filter in the first stage, a new image segmentation based on the convolutional neural network optimized by satin bowerbird optimization (SBO) has been adopted and its efficiency has been indicated by the confusion matrix. Then, feature extraction is performed to extract the useful information from the segmented image. An optimized feature selection based on the SBO algorithm is also applied to prune excessive information. Finally, a support vector machine classifier is used to categorize the processed image into the following two groups: cancerous and healthy cases. Simulations have been performed of the American Cancer Society database, and the results have been compared with ten different methods from the literature to investigate the performance of the system in terms of accuracy, sensitivity, negative predictive value, specificity, and positive predictive value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.