The anti-corrosion effect and the antimicrobial activity of lemongrass essential oil (LEO) against the planktonic and sessile growth of a sulfate reducing bacterium (SRB) were evaluated. Minimum inhibitory concentration (MIC) of LEO and its major component, the citral, was 0.17 mg ml-1. In addition, both LEO and citral showed an immediate killing effect against SRB in liquid medium, suggesting that citral is responsible for the antimicrobial activity of LEO against SRB. Transmission electron microscopy revealed that the MIC of LEO caused discernible cell membrane alterations and formed electron-dense inclusions. Neither biofilm formation nor corrosion was observed on carbon steel coupons after LEO treatment. LEO was effective for the control of the planktonic and sessile SRB growth and for the protection of carbon steel coupons against biocorrosion. The application of LEO as a potential biocide for SRB growth control in petroleum reservoirs and, consequently, for souring prevention, and/or as a coating protection against biocorrosion is of great interest for the petroleum industries.
Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.
Prevention or cure of different illnesses through the use of plant latex is a worldwide known concept. The antifungal activity of Hancornia speciosa latex has been observed against Candida albicans. However, H. speciosa latex is not a sterile plant exudate and secondary metabolites produced by bacteria could be involved in fungal inhibition. In the present study, the bacterial communities of the latex from three H. speciosa trees were characterized using traditional plating and molecular methods. Twelve strains isolated from the latex samples were clustered into four groups by amplified ribosomal DNA restriction analysis (ARDRA). One representative of each group was sequenced and they were identified as belonging to the genera Bacillus, Klebsiella, Enterobacter and Escherichia. None of the 12 isolates showed antifungal activity against C. albicans. A lack of a microbial origin for the antifungal properties of latex was noted. DGGE profiles generated from each of the three latex samples showed unique patterns. Sequencing of the DGGE bands demonstrated the affiliation with the genera Klebsiella, Pantoea, Enterobacter and Burkholderia. In addition, clone libraries were generated and the phylogenetic distribution of the 50 analyzed clones was similar to that obtained using DGGE. The presence of some potential pathogens should be considered before using H. speciosa latex in folk medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.