Direct somatic embryo formation (without intervening callus) from garlic clove basal tissue was induced in which the influence of plant growth regulators (PGRs) on various explants was examined. Medium added with 2.0 mg/l 6-benzylaminopurine (BAP) and 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) were the most effective PGR combination for somatic embryo induction. It induced embryos directly in 85.5% of the basal clove explant. Callus induction was also obtained from other parts of explant and 2.0 mg/l 2,4-D induced callusing in 86.5% of the inoculated explants. Protein, amino acid and alliin content were measured in callus and in embryos. Somatic embryos had more soluble protein and free amino acid compared to callus. HPTLC analysis revealed that alliin was significantly high in somatic embryos compared to undifferentiated callus tissue; the content was even more in older embryos. The present study of Allium indicates that the event of morphogenetic development including in vitro embryogeny can effectively be analysed by monitoring the changes of biochemical profiles.
We established an efficient plant regeneration system for Catharanthus roseus L. (G.) Don through somatic embryogenesis. Embryogenic callus was induced from hypocotyl of seed germinated in vitro. Somatic embryogenesis in Catharanthus has been categorized into three distinct stages: (1) initiation and proliferation of embryo; (2) maturation, and; (3) germination or plantlet conversion. Beside plant growth regulators, various stages of embryogenesis were screened for their response to a wide variety of factors (pH, gelrite, light, sugar alcohols, polyethyleneglycol and amino acids), which affect embryogenesis. All of the tested factors had a small to marked influence on embryogeny and eventual conversion to plantlets. The plantlets were acclimatized successfully in a greenhouse. To our knowledge, this is the first report describing a detailed study of various cultural factors which regulate embryogenesis in C. roseus. The results discussed in this paper may be used in mass propagation to produce medicinal raw material, and the embryo precursor cells could be used in genetic modification programmes that aim to improve the alkaloid yield as well.
In the present study, the regeneration pathway, especially the different events of somatic embryogenesis (SE) have been studied morphologically and biochemically in Catharanthus roseus. Firstly, the calluses were induced from different explant sources (hypocotyl, epicotyl and root) by using various auxins. Embryogenic and non-embryogenic calluses were identified based on their morphology, colour and dry weight. Embryogenic callus was later cultivated on MS added with 0.45 µM 2,4-D, 6.62 µM BAP and 1.44 µM GA3 for obtaining various developmental stages of embryos. Different stages of embryos have been assayed for the establishment of marker based embryogenesis, particularly on embryo specific proteins whose presence or absence will ensure a rapid and efficient production of embryos that has a special application to clonal biotechnology. Two embryo specific proteins (38 and 33 kD) have been identified for the first time in C. roseus during torpedo stage of embryogenesis. Besides, multiple shoot formation from in vitro raised emblings was also attempted to examine the role of BAP and kinetin for shoot proliferation. The shoots were rooted with 5.37 µM NAA and 5.71 µM IAA before transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.