SummaryDevelopment of reliable cell-based nanotoxicology assays is important for evaluation of potentially hazardous engineered nanomaterials. Challenges to producing a reliable assay protocol include working with nanoparticle dispersions and living cell lines, and the potential for nano-related interference effects. Here we demonstrate the use of a 96-well plate design with several measurement controls and an interlaboratory comparison study involving five laboratories to characterize the robustness of a nanocytotoxicity MTS cell viability assay based on the A549 cell line. The consensus EC 50 values were 22.1 mg/L (95% confidence intervals 16.9 mg/L to 27.2 mg/L) and 52.6 mg/L (44.1 mg/L to 62.6 mg/L) for positively charged polystyrene nanoparticles for the serum-free and serum conditions, respectively, and 49.7 µmol/L (47.5 µmol/L to 51.5 µmol/L) and 77.0 µmol/L (54.3 µmol/L to 99.4 µmol/L) for positive chemical control cadmium sulfate for the serum-free and serum conditions, respectively. Results from the measurement controls can be used to evaluate the sources of variability and their relative magnitudes within and between laboratories. This information revealed steps of the protocol that may need to be modified to improve the overall robustness and precision. The results suggest that protocol details such as cell line ID, media exchange, cell handling, and nanoparticle dispersion are critical to ensure protocol robustness and comparability of nanocytotoxicity assay results. The combination of system control measurements and interlaboratory comparison data yielded insights that would not have been available by either approach by itself.
Methylglyoxal is an endogenous electrophile produced in Escherichia coli by the enzyme methylglyoxal synthase to limit the accumulation of phosphorylated sugars. In enteric bacteria methylglyoxal is detoxified by the glutathione-dependent glyoxalase I/II system, by glyoxalase III, and by aldehyde reductase and alcohol dehydrogenase. Here we demonstrate that glyoxalase III is a stationary-phase enzyme. Its activity reached a maximum at the entry into the stationary phase and remained high for at least 20 h. An rpoS mutant displayed normal glyoxalase I and II activities but was unable to induce glyoxalase III in stationary phase. It thus appears that glyoxalase III is regulated by rpoS and might be important for survival of non-growing E. coli cultures.
Iron is among the most important micronutrients used by bacteria. As a partner of the Fenton reaction, however, iron potentiates oxygen toxicity. Strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, is an essential factor for life in the presence of oxygen. In Escherichia coli, iron metabolism is regulated by the Fur protein. A Fur-deficient mutant, in stationary phase, displayed about 30y-fold lower HPII activity than the respective, Fur-proficient parental strain. Deletion of fur seems to affect HPII catalase specifically, since the mutant was capable of inducing HPI catalase when challenged with H(2)O(2). Low HPII catalase activity appears to be among the reasons for hydrogen peroxide hypersensitivity of the deltafur mutant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.