Anaerobic digestion is recognized as being an advantageous waste management technique representing a source of clean and renewable energy. However, biogas production through such practice is complex and it relies on the interaction of several factors including changes in operating and monitoring parameters. Enormous researchers have focused and gave their full attention to mathematical modeling of anaerobic digestion to get good insights about process dynamics, aiming to optimize its efficiency. This paper gives an overview of the different approaches applied to tackle this challenge including mechanistic and data-driven models. This review has led us to conclude that neural networks combined with metaheuristic techniques has the potential to outperform mechanistic and classical machine learning models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.