Abstract:The need for the sharing of genetic data, for instance, in genome-wide association studies is incessantly growing. In parallel, serious privacy concerns rise from a multi-party access to genetic information. Several techniques, such as encryption, have been proposed as solutions for the privacy-preserving sharing of genomes. However, existing programming means do not support guarantees for privacy properties and the performance optimization of genetic applications involving shared data. We propose two contributions in this context. First, we present new cloud-based architectures for cloud-based genetic applications that are motivated by the needs of geneticians. Second, we propose a model and implementation for the composition of watermarking with encryption, fragmentation, and client-side computations for the secure and privacy-preserving sharing of genetic data in the cloud.
Cooperation of research groups is nowadays common for the development and execution of biomedical analyses. Multiple partners contribute data in this context, data that is often centralized for processing at some cluster-based or supercomputer-based infrastructure. In contrast, real distributed collaboration that involves processing of data from several partners at different sites is rare. However, such distributed analyses are often very interesting, in particular, for scalability, security and privacy reasons. In this article, we motivate the need for real distributed biomedical analyses in the context of several ongoing projects, including the I-CAN project that involves 34 French hospitals and affiliated research groups. We present a set of distributed architectures for such analyses that we have derived from discussions with different medical research groups and a study of related work. These architectures allow for scalability, security/privacy and reproducibility issues to be taken into account. Finally, we illustrate that these architectures can serve as the basis of a development method for biomedical distributed analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.