This paper considers joint production control and product specifications decision making in a failure prone manufacturing system. This is with the knowledge that tight process specifications, while leading to a product of more reliable quality and higher market value, are at the same time associated with higher levels of non conforming parts, a higher rate of parts rejection and thus a lowering of overall plant productivity. The decision making is further complicated by the lack of reliability of the production process which imposes that an adequate, also to be designed, level of inventory of finished parts be maintained. The overall optimal decision policy is defined here as one that maximizes the long term average per unit time profit of a combined measure of quality and quantity dependent sales revenue, minus inventory and backlog costs, in the presence of random plant failures and random repair durations. Policy optimization is achieved via a revisited model of the BieleckiKumar theory for Markovian machines and a simulation and experimental design based methodology for the more general cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.