The problem of computing distances and shortest paths between vertices in graphs is one of the fundamental issues in graph theory. It is of great importance in many different applications, for example, transportation, and social network analysis. However, efficient shortest distance algorithms are still desired in many disciplines. Basically, the majority of dense graphs have ties between the shortest distances. Therefore, we consider a different approach and introduce a new measure to solve all-pairs shortest paths for undirected and unweighted graphs. This measures the shortest distance between any two vertices by considering the length and the number of all possible paths between them. The main aim of this new approach is to break the ties between equal shortest paths SP, which can be obtained by the Breadth-first search algorithm (BFS), and distinguish meaningfully between these equal distances. Moreover, using the new measure in clustering produces higher quality results compared with SP. In our study, we apply two different clustering techniques: hierarchical clustering and K-means clustering, with four different graph models, and for a various number of clusters. We compare the results using a modularity function to check the quality of our clustering results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.