PURPOSE The purpose of this study was to apply different time series analytical techniques to SEER US lung cancer death rate data to develop a best fit model. METHODS Three models for yearly time series predictions were built: autoregressive integrated moving average (ARIMA), simple exponential smoothing (SES), and Holt's double expansional smoothing (HDES) models. The three models were built using Python 3.9, on the basis of Anaconda 2022.10. RESULTS This study used SEER data from 1975 to 2018 and included 545,486 patients with lung cancer. The best parameters for ARIMA are ARIMA (p, d, q) = (0, 2, 2). In addition, the best parameter for SES was α = .995, whereas the best parameters for HDES were α = .4 and β = .9. The HDES was the model that best fit the lung cancer death rate data, with a root mean square error (RMSE) of 132.91. CONCLUSION Including monthly diagnoses, death rates, and years in SEER data increases the number of observations for training and test sets, enhancing the performance of time series models. The reliability of the RMSE was based on the mean lung cancer mortality rate. Owing to the high mean lung cancer death rate of 8,405 patients per year, it is acceptable for reliable models to have large RMSEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.