The study explores the performance characteristics of a Z-Blade reaction type water turbine and investigates a test unit for an ideal and practical case using the governing equations derived from the principles of conservation of mass, momentum, and energy. Various analyses are conducted with consideration of the ideal and possible operating condition for low-head (3 m to 5 m) and low-flow (2.5 L/sec and below) water resources. The relationship of the fluid flow friction known as k-factor with mass flow rate and angular velocity for a Z-Blade turbine model is discussed. The measured performance of two PVC pipe sizes (0.5 inch and 1 inch) of a Z-Blade turbine is presented and evaluated against theoretical results. This work also describes the simple concept of a Z-Blade turbine for a pico-hydro application. A large variation in k-factor with a 1% difference in rotational speed and mass flow rate is presented. The coefficient k-factor is also demonstrated as a strong parameter influencing the mass flow rate and rotational speed performance. This coefficient also has a significant impact on the conversion of potential energy into power output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.