Sulfur mustard (SM) is a harmful warfare agent that poses a serious threat to human health and the environment. Thus, the design of porous materials capable of sensing and/or capturing SM is of utmost importance. In this paper, the interactions of SM and its derivatives with ethylpillar[5]arene (EtP[5]) and the interactions between SM and a variety of host macrocycles were investigated through molecular docking calculations and non-covalent interaction (NCI) analysis. The electronic quantum parameters were computed to assess the chemical sensing properties of the studied hosts toward SM. It was found that dispersion interactions contributed significantly to the overall complexation energy, leading to the stabilization of the investigated systems. DFT energy computations showed that SM was more efficiently complexed with DCMP[5] than the other hosts studied here. Furthermore, the studied macrocyclic containers could be used as host-based chemical sensors or receptors for SM. These findings could motivate experimenters to design efficient sensing and capturing materials for the detection of SM and its derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.