<span>The expanding propensity of organization users to utilize cloud services urges to deliver services in a service pool with a variety of functional and non-functional attributes from online service providers. brokers of cloud services must intense rivalry competing with one another to provide quality of service (QoS) enhancements. Such rivalry prompts a troublesome and muddled providing composite services on the cloud using a simple service selection and composition approach. Therefore, cloud composition is considered a non-deterministic polynomial (NP-hard) and economically motivated problem. Hence, developing a reliable economic model for composition is of tremendous interest and to have importance for the cloud consumer. This paper provides “A location-aware deep learning framework for improving the QoS-based service composition for cloud consumers”. The proposed framework is firstly reducing the dimensions of data. Secondly, it applies a combination of the deep learning long short-term memory network and particle swarm optimization algorithm additionally to considering the location parameter to correctly forecast the QoS provisioned values. Finally, it composes the ideal services need to reduce the customer cost function. The suggested framework's performance has been demonstrated using a real dataset, proving that it superior the current models in terms of prediction and composition accuracy.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.