It is accepted that only three elements are ferromagnetic at room temperature, the transition metals iron, cobalt and nickel. The Stoner criterion explains why, for example, iron is ferromagnetic but manganese is not, even though both elements have an unfilled 3d shell and are adjacent in the periodic table: the product of the density of states with the exchange integral must be greater than unity for spontaneous ordering to emerge.1,2 Here, we demonstrate that it is possible to alter the electronic states of nonferromagnetic materials, such as diamagnetic copper and paramagnetic manganese, in 2 order to drive them ferromagnetic at room temperature. This remarkable effect is achieved via interfaces between metallic thin films and C 60 molecular layers. The emergent ferromagnetic state can exist over several layers of the metal before being quenched at large sample thicknesses by the material's bulk properties. While the induced magnetisation is easily measurable by magnetometry, low energy muon spin spectroscopy 3 provides insight into its magnetic distribution by studying the depolarisation process of low energy muons implanted in the sample. This technique indicates localized spin-ordered states at and close to the metallo-molecular interface.Density functional theory simulations suggest a mechanism based on magnetic hardening of the metal atoms due to electron transfer. 4,5 This opens a path for the exploitation of molecular coupling to design magnetic metamaterials using abundant, non-toxic elements such as organic semiconductors. Charge transfer at molecular interfaces can then be used to control spin polarisation or magnetisation, with far reaching consequences in the design of devices for electronic, power or computing applications. 6,7 Multifunctional materials with the spin degree of freedom such as multiferroics, magnetic semiconductors and molecular magnets have all aroused huge interest as potentially transformative components in quantum technologies. [8][9][10][11][12] Strategies used to bring magnetic ordering to these materials typically rely on the inclusion of magnetic transition metals, heavy elements with a large atomic moment or rare earths. In thin film structures, proximity effects and coupling at interfaces play an essential role. 13,14 This is especially the case for molecular spintronics, 15,16 where organic thin films grown on copper have demonstrated spin filtering. 17The organic magnetic coupling can propagate for long distances in systems such as nanoscale vortex-like configurations or nanoskyrmion lattices. 183We choose C 60 as a model molecule due to its structural simplicity and robustness as well as its high electron affinity. C 60 /transition metal complexes exhibit strong interfacial coupling between metal 3d z electrons and molecular π-bonded p electrons. The potential created by the mismatch of molecular and metal work functions leads to a partial filling of the interface states. [19][20][21] Other molecules with close electron affinity and the potential for 3d z /p coupling ...
Magnetic skyrmions are knot-like quasiparticles. They are candidates for non-volatile data storage in which information is moved between fixed read and write terminals. Read-out operation of skyrmion-based spintronic devices will rely upon electrical detection of a single magnetic skyrmion within a nanostructure. Here, we present Pt/Co/Ir nanodiscs which support skyrmions at room temperature. We measured the Hall resistivity whilst simultaneously imaging the spin texture using magnetic scanning transmission x-ray microscopy (STXM). The Hall resistivity is correlated to both the presence and size of the skyrmion. The size-dependent part matches the expected anomalous Hall signal when averaging the magnetisation over the entire disc. We observed a resistivity contribution which only depends on the number and sign of skyrmion-like objects present in the disc. Each skyrmion gives rise to 22±2 nΩ cm irrespective of its size. This contribution needs to be considered in all-electrical detection schemes applied to skyrmion-based devices.The non-trivial topology of a skyrmion leads to an improved stability against external perturbations 1, 2, 3, 4, 5 . The topology of the spin texture is characterised by the skyrmion winding number S, which takes integer values 6 . Mathematically, S is given by 1 ,
Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C 60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp 3 orbitals are annealed into sp 2 −π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C 60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz-π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices. emergent magnetism | molecular spintronics | interfacial magnetism | charge transfer | nanocarbon I nterfaces are critical in quantum physics, and therefore we must explore the potential for designer hybrid materials that profit from promising combinatory effects. In particular, the fine-tuning of spin polarization at metallo-organic interfaces opens a realm of possibilities, from the direct applications in molecular spintronics and thin-film magnetism to biomedical imaging or quantum computing. This interaction at the surface can control the spin polarization in magnetic field sensors, generate magnetization spin-filtering effects in nonmagnetic electrodes, or even give rise to a spontaneous spin ordering in nonmagnetic elements such as diamagnetic copper and paramagnetic manganese (1-11).The impact of carbon-based molecules on adjacent ferromagnets is not limited to spin filtering and electronic transport, but extends to induced changes in the metal anisotropy, magnetization, coercivity, and bias (12-14). Charge transfer and d(metal)-π(carbon) orbital coupling at the interface may change the density of states, spin population, and exchange of metallocarbon interfaces (4,15,16). The interaction between the molecule and the metal depends strongly on the morphology and specific molecular geometry (17, 18). It may lead to a change in the density of states at the Fermi energy DOS(E F ) and/or the exchange-correlation integral (I s ) as described by the Stoner criterion for ferr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.