As major oil and gas companies have been investing in shale oil and gas resources, even though has been part of the oil and gas industry for long time, shale oil and gas has gained its popularity back with increasing oil prices. Oil and gas industry has adapted to the low-cost operations and has started investing in and utilizing the shale oil sources significantly. In this perspective, this study investigates and outlines the latest advances, technologies, potential of shale oil and gas reservoirs as a significant source of energy in the current supply and demand dynamics of oil and gas resources. A comprehensive literature review focusing on the recent developments and findings in the shale oil and gas resources along with the availability and locations are outlined and discussed under the current dynamics of the oil and gas market and resources. Literature review includes a broad spectrum that spans from technical petroleum literature with very comprehensive research using SCOPUS database to other renowned resources including journals and other publications. All gathered information and data are summarized. Not only the facts and information are outlined for the individual type of energy resource but also the relationship between shale oil/gas and other unconventional resources are discussed from a perspective of their roles either as a competing or a complementary source in the industry. In this sense, this study goes beyond only providing raw data or facts about the energy resources but also a thorough publication that provides the oil and gas industry professional with a clear image of the past, present and the expected near future of the shale oil/gas as it stands with respect to other energy resources. Among the few existing studies that shed light on the current status of the oil and gas industry facing the rise of the shale oil are up-to-date and the existing studies within SPE domain focus on facts only lacking the interrelationship between heavy and light oil as a complementary and a competitor but harder-to-recover form of hydrocarbon energy within the era of rise of renewables and other unconventionals. This study closes the gap and serves as an up-to-date reference for industry professionals.
Hydraulic fracturing is a widely accepted and applied stimulation method in the unconventional oil and gas industry. With the increasing attention to unconventional reservoirs, hydraulic fracturing technologies have developed and improved more in the last few years. This study explores all applications of hydraulic fracturing methods to a great extent. It can be used as a guideline study, covering all the procedures and collected data for conventional reservoirs by considering the limited parameters of unconventional reservoirs. This paper intends to be a reference article containing all the aspects of the hydraulic fracturing method. A comprehensive study has been created by having a wide scope of examinations from the applied mechanisms to the technological materials conveyed from the different industries to utilize this technique efficiently. Furthermore, this study analyses the method, worldwide applications, advantages and disadvantages, and comparisons in different unconventional reservoirs. Various case studies that examine the challenges and pros & cons of hydraulic fracturing are included. Hydraulic fracturing is a promising stimulation technique that has been widely applied worldwide. It is challenging due to the tight and nanoporous nature, low permeability, complex geological structure, and in-situ stress field in unconventional reservoirs. Consequently, economic conditions and various parameters should be analyzed individually in each case for efficient applications. Therefore, this study provides the primary parameters and elaborate analysis of the techniques applied for a successful stimulation under SPECIFIC circumstances and provides a full spectrum of information needed for unconventional field developments. All the results are evaluated and detailed for each field case by providing the principles of applying hydraulic fracturing technologies. Many literature reviews provide different examples of hydraulic fraction methods; however, no study covers and links up both the main parameters and learnings from real cases worldwide. This study will fill this gap and illuminate the application of the hydraulic fracturing method.
Electrical resistance heating provides key advantages over other thermal recovery methods in the recovery of heavy oil resources. These advantages include low upfront capital expenses, more control on the delivery of the heat spatially, easiness of permitting in environmentally sensitive areas as well as environmental and economic benefits due to lower carbon footprint. However, the recovery efficiency is relatively lower compared to more conventional methods such as CSS, steamflood and SAGD processes as it doesn't introduce a (pressure) drive mechanism and radius of impact is relatively small which may result in marginal economics.1 In this study, the application of electrical resistance heating on multilateral wells are studied in order to illustrate the enhanced physical and economic benefits of the method with the multilaterals.2 A comprehensive review of the technology with all the technical and economic details on the deployment of the electrical resistance heater is provided. A full-physics commercial reservoir simulator is utilized to model a benchmark model and it is coupled with a robust optimization and uncertainty tool to investigate the significance of the control and uncertainty variables in the system. Propagation of the heat, increased the radius of impact, production performance, energy input and economics are outlined in comparison to the base case where the horizontal well is modeled without the extra laterals. Production engineering and deployment aspects are all provided in detail, as well. Utilization of electrical resistance heaters on multilateral wells provides improved economics due to the increased recovery with the additional accessible reservoir volume for heating with the reduced cost of the additional laterals as opposed to the major cost of the main wellbore. The improved unit cost for the heater per foot also helps the economics, thus increased the radius of impact translates into better recovery at lower unit costs. Model inputs as well as the results including the production performances, significance of key parameters and economics, are outlined in a comparative manner. Electrical resistance heating is not a new process but has recently gained more attention due to the advances in the materials used providing better durability, however, the recovery process needs special designs that bring down the unit cost to make the projects feasible. This study provides a new approach in improving recovery in electrical resistance heating methods that may help to turn several potential marginal projects into projects with more favorable economics in a method which has a great potential in an industry becoming more environmentally sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.