Predicting the value of real estate is a complex endeavor due to the abundance of subjective criteria. Objective consideration of the value-affecting criteria in real estate and regulation of decision support systems will enable the acquisition of more accurate results. In this study, analytic hierarchy process (AHP), a type of multi-criteria decision analysis (MCDA), is used to reproduce coefficients that serve as the basis for real estate valuation. A region in the Selcuklu district of Konya, Turkey was used to test the model created by AHP. Weighted criteria describing areas subjected to purchase/sale were generated by the AHP method and then validated. Additionally, a valuation model was created by the multiple regression analysis (MRA) method for comparison and performance analyses. Weighted values were transformed from AHP points and acquired from the MRA method and then joined with geographic information systems (GIS). Value maps of the study area and purchase/sale values were generated according to these newly created models. The performance comparison and value maps revealed that the AHP method is more successful than the MRA method. This study addressed the complexity of criteria issue by using the original hierarchical structure of AHP and thus contributes to the world economy by enabling the generation of more accurate estimations.
In real estate, mass appraisal is a very important subject in the valuation of two and more properties. It can be of benefit in a number of fields including taxation, banking transactions, expropriation, etc. The base problem is which criteria to use for mass appraisal. Because the number of criteria and the criteria themselves vary according to people, regions and countries, they are uncertain. They should be optimum in order to save on time, labour and cost. The aim of this study is to reduce the criteria by determining which ones affect the plot value. A survey which was answered by a total of 2,531 participants was conducted in Turkey. Principal Component Analysis (PCA), one of the criteria analysis methods, was applied to the survey data. The number of criteria was reduced to 14 with separation and to 30 according to the results of PCA. But they decreased in the model verification when criteria data for 558 samples were collected in the Konya study area. An index of the neighbourhood and locational features of these criteria was created by using GIS. Three models were established using Multiple Regression Analysis (MRA) and the performance of the models was examined. The prediction values and the market value were integrated into the GIS to compare the spatial distributions of plot values.
Real estate is a form of immovable asset that enables individuals to exert their property rights and provides a form of material guarantee through its economic value. The economic value of real estate, which is reflected in the price, is an aspect that all countries emphasize today by identifying purchase and sale values in market conditions that are removed from large project rumors and speculations. The more the real estate market value is removed from reality, the more negative its effect will be on the cost-benefit of real estate management. This study aimed to identify the main criteria that affect parcel value, which constitutes a basis for real estate, narrow them down to the optimum level using questionnaires and standardize them. A total of 559 experts working in real estate valuation and 1,915 members of the public that play a role in real estate purchases and sales were contacted in Ankara, Konya and Kayseri, all of which are located in the Central Anatolia Region of Turkey. The factor analysis method was applied to the survey data. Grouping was carried out with 10 factors and the results were interpreted.
In this paper, an inventory of the landslide that occurred in Karahacılı at the end of 2019 was created and the pre-landslide conditions of the region were evaluated with traditional statistical and spatial data mining methods. The current orthophoto of the region was created by unmanned aerial vehicle (UAV). In this way, the landslide areas in the region were easily determined. According to this, it was determined that the areas affected by the landslides had an average slide of 26.56 m horizontally. The relationships among the topographic, hydrographic, and vegetative factors of the region were revealed using the Apriori algorithm. It was determined that the areas with low vegetation in the study area with 55% confidence were of a Strong Slope feature from the Apriori algorithm. In addition, the cluster distributions formed by these factors were determined by K-means. Among the five clusters created with K-means, it was determined that the study area was 38% in the southeast, had a Strong Slope, Low Vegetation, Non-Stream Line, and a slope less than 140 m. K-means results of the study were made with performance metrics. Average accuracy, recall, specificity, precision, and F-1 score were found as 0.77, 0.69, 0.84, and 0.73 respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.