In this work, we consider a nonlinear system of viscoelastic equations of Kirchhoff type with degenerate damping and source terms in a bounded domain. Under suitable assumptions on the initial data, the relaxation functions gi(i = 1,2) and degenerate damping terms, we obtain global existence of solutions. Then, we prove the general decay result. Finally, we prove the finite time blow‐up result of solutions with negative initial energy. This work generalizes and improves earlier results in the literature.
In this paper, we consider the initial boundary value problem of a coupled viscoelastic Kirchhoff-type equations with degenerate damping:. Firstly, we prove a local existence theorem by using the Faedo-Galerkin approximations. Then, we study blow up of solutions when initial energy is positive.
In this work, we consider a quasilinear system of viscoelastic equations with degenerate damping, dispersion, and source terms under Dirichlet boundary condition. Under some restrictions on the initial datum and standard conditions on relaxation functions, we study global existence and general decay of solutions. The results obtained here are generalization of the previous recent work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.